Translationally invariant NLS lattices

Dmitry Pelinovsky (McMaster University, Canada)

References:
D.P., V. Rothos, Physica D 202, 16-36 (2005)
O. Oxtoby, D.P., I. Barashenkov, Nonlinearity 19, 217-235 (2006)
G. looss, D.P., Physica D 216, 327 (2006)
D.P., Nonlinearity, accepted (2006)

Discrete nonlinear Schrödinger model

Continuous NLS model

$$
i u_{t}=u_{x x}+|u|^{2} u, \quad x \in \mathbb{R}, \quad u \in \mathbb{C}
$$

admits traveling pulse solutions

$$
u(x, t)=\sqrt{\omega} \operatorname{sech}(\sqrt{\omega}(x-2 c t-s)) e^{i c(x-c t)+i \omega t+i \theta}
$$

where $\omega \in \mathbb{R}_{+}$and $(c, s, \theta) \in \mathbb{R}^{3}$.

Discrete nonlinear Schrödinger model

Continuous NLS model

$$
i u_{t}=u_{x x}+|u|^{2} u, \quad x \in \mathbb{R}, \quad u \in \mathbb{C}
$$

admits traveling pulse solutions

$$
u(x, t)=\sqrt{\omega} \operatorname{sech}(\sqrt{\omega}(x-2 c t-s)) e^{i c(x-c t)+i \omega t+i \theta}
$$

where $\omega \in \mathbb{R}_{+}$and $(c, s, \theta) \in \mathbb{R}^{3}$.
"Standard" (on-site) discretisation

$$
i \dot{u}_{n}=\frac{u_{n+1}-2 u_{n}+u_{n-1}}{h^{2}}+\left|u_{n}\right|^{2} u_{n}, \quad n \in \mathbb{Z}
$$

does not have "true" traveling pulse solutions.

Reductions for traveling waves

Traveling waves

$$
\begin{aligned}
u_{1}(t)= & u_{0}(t-\tau) e^{i \theta} \\
u_{2}(t)= & u_{1}(t-\tau) e^{i \theta}=u_{0}(t-2 \tau) e^{2 i \theta}, \\
& \ldots \\
u_{n+1}(t)= & u_{n}(t-\tau) e^{i \theta}=\ldots=u_{0}(t-n \tau) e^{i n \theta}
\end{aligned}
$$

Reductions for traveling waves

Traveling waves

$$
\begin{aligned}
u_{1}(t)= & u_{0}(t-\tau) e^{i \theta} \\
u_{2}(t)= & u_{1}(t-\tau) e^{i \theta}=u_{0}(t-2 \tau) e^{2 i \theta}, \\
& \ldots \\
u_{n+1}(t)= & u_{n}(t-\tau) e^{i \theta}=\ldots=u_{0}(t-n \tau) e^{i n \theta}
\end{aligned}
$$

Traveling solutions

$$
u_{n}(t)=\phi(z) e^{i \omega t}, \quad z=h n-c t, \quad c=h / \tau, \quad \omega=c \theta / h .
$$

Reductions for traveling waves

Traveling waves

$$
\begin{aligned}
u_{1}(t)= & u_{0}(t-\tau) e^{i \theta} \\
u_{2}(t)= & u_{1}(t-\tau) e^{i \theta}=u_{0}(t-2 \tau) e^{2 i \theta}, \\
& \ldots \\
u_{n+1}(t)= & u_{n}(t-\tau) e^{i \theta}=\ldots=u_{0}(t-n \tau) e^{i n \theta}
\end{aligned}
$$

Traveling solutions

$$
u_{n}(t)=\phi(z) e^{i \omega t}, \quad z=h n-c t, \quad c=h / \tau, \quad \omega=c \theta / h .
$$

The differential advanced-delay equation

$$
i c \phi^{\prime}(z)=\frac{\phi(z+h)-2 \phi(z)+\phi(z-h)}{h^{2}}-\omega \phi(z)+|\phi|^{2} \phi
$$

Obstacles on existence

Classical solutions $\phi(z)$ on $z \in \mathbb{R}$

- $\phi(z)$ is $C^{0}(\mathbb{R})$ if $c=0$
- $\phi(z)$ is $C^{1}(\mathbb{R})$ if $c \neq 0$
- $\phi(z)$ is a single-humped solution decaying to $\phi=0$

Obstacles on existence

Classical solutions $\phi(z)$ on $z \in \mathbb{R}$

- $\phi(z)$ is $C^{0}(\mathbb{R})$ if $c=0$
- $\phi(z)$ is $C^{1}(\mathbb{R})$ if $c \neq 0$
- $\phi(z)$ is a single-humped solution decaying to $\phi=0$

Properties of "standard" stationary solutions $(c=0)$:

- $\phi(z)$ is piecewise constant on $z \in \mathbb{R}$
- $\phi_{n}=\phi(n h)$ is symmetric either about a node or about the midpoint between two nodes
- No continuous deformation exists between these two particular solutions (Peierls-Nabarro potential)

Example of stationary solutions

Stationary solutions in the "standard" discrete NLS model

$$
\frac{\phi_{n+1}-2 \phi_{n}+\phi_{n-1}}{h^{2}}-\phi_{n}+\phi_{n}^{3}=0, \quad n \in \mathbb{Z}
$$

Exceptional discretizations

General discrete NLS equation:

$$
i \dot{u}_{n}=\frac{u_{n+1}-2 u_{n}+u_{n-1}}{h^{2}}+f\left(u_{n-1}, u_{n}, u_{n+1}\right)
$$

where
P1 (continuity) $f(u, u, u)=2|u|^{2} u$
P2 (symmetry) $f(v, u, w)=f(w, u, v)$
P3 (gauge) $f\left(e^{i \alpha} v, e^{i \alpha} u, e^{i \alpha} w\right)=e^{i \alpha} f(v, u, w) \forall \alpha \in \mathbb{R}$
P4 $f(v, u, w)$ is independent on h
P5 $f(v, u, w)$ is homogeneous cubic polynomial in (v, u, w)

Exceptional discretizations

General discrete NLS equation:

$$
i \dot{u}_{n}=\frac{u_{n+1}-2 u_{n}+u_{n-1}}{h^{2}}+f\left(u_{n-1}, u_{n}, u_{n+1}\right)
$$

where
P1 (continuity) $f(u, u, u)=2|u|^{2} u$
P2 (symmetry) $f(v, u, w)=f(w, u, v)$
P3 (gauge) $f\left(e^{i \alpha} v, e^{i \alpha} u, e^{i \alpha} w\right)=e^{i \alpha} f(v, u, w) \forall \alpha \in \mathbb{R}$
P4 $f(v, u, w)$ is independent on h
P5 $f(v, u, w)$ is homogeneous cubic polynomial in (v, u, w)

Exceptional nonlinearities are those that support continuous stationary solutions with $c=0$ and $\phi \in C^{0}(\mathbb{R})$

Examples of exceptional discretizations

Ablowitz-Ladik lattice:

$$
f=\left(u_{n+1}+u_{n-1}\right)\left|u_{n}\right|^{2}
$$

New 2-parameter lattice:

$$
\begin{array}{r}
f=(1-\chi-2 \eta)\left|u_{n}\right|^{2}\left(u_{n+1}+u_{n-1}\right)+\chi u_{n}^{2}\left(\bar{u}_{n+1}+\bar{u}_{n-1}\right) \\
+\eta\left(\left|u_{n+1}\right|^{2}+\left|u_{n-1}\right|^{2}\right)\left(u_{n+1}+u_{n-1}\right)
\end{array}
$$

Cases $(\chi, \eta)=\left(\frac{1}{2}, 0\right)$ and $(\chi, \eta)=\left(0, \frac{1}{2}\right)$ are reported in S. Dmitriev, P. Kevrekidis, A. Sukhorukov, et al., Phys. Lett. A 356, 324 (2006)

Purposes of this work

- Find the most general exceptional nonlinearity from the reduction of the second-order difference equation to the first-order difference equation.

Purposes of this work

- Find the most general exceptional nonlinearity from the reduction of the second-order difference equation to the first-order difference equation.
- Confirm that this reduction for stationary solutions is equivalent to conservation of momentum for time-dependent solutions (Kevrekidis, 2003), where the momentum is

$$
M=i \sum_{n \in \mathbb{Z}}\left(\bar{u}_{n+1} u_{n}-u_{n+1} \bar{u}_{n}\right) .
$$

Purposes of this work

- Find the most general exceptional nonlinearity from the reduction of the second-order difference equation to the first-order difference equation.
- Confirm that this reduction for stationary solutions is equivalent to conservation of momentum for time-dependent solutions (Kevrekidis, 2003), where the momentum is

$$
M=i \sum_{n \in \mathbb{Z}}\left(\bar{u}_{n+1} u_{n}-u_{n+1} \bar{u}_{n}\right) .
$$

- Prove that this reduction gives a sufficient condition for existence of translationally invariant stationary solutions.

Purposes of this work

- Find the most general exceptional nonlinearity from the reduction of the second-order difference equation to the first-order difference equation.
- Confirm that this reduction for stationary solutions is equivalent to conservation of momentum for time-dependent solutions (Kevrekidis, 2003), where the momentum is

$$
M=i \sum_{n \in \mathbb{Z}}\left(\bar{u}_{n+1} u_{n}-u_{n+1} \bar{u}_{n}\right) .
$$

- Prove that this reduction gives a sufficient condition for existence of translationally invariant stationary solutions.
- Apply the normal form reduction (P, Rothos, 2005) as a necessary condition for existence of traveling solutions.

Reductions of difference equations

Consider the second-order difference equation

$$
\frac{\phi_{n+1}-2 \phi_{n}+\phi_{n-1}}{h^{2}}-\omega \phi_{n}+f\left(\phi_{n-1}, \phi_{n}, \phi_{n+1}\right)=0
$$

and reduce the problem to the first-order difference equation
$E_{n}=\frac{1}{h^{2}}\left|\phi_{n+1}-\phi_{n}\right|^{2}-\frac{1}{2} \omega\left(\phi_{n} \bar{\phi}_{n+1}+\bar{\phi}_{n} \phi_{n+1}\right)+g\left(\phi_{n}, \phi_{n+1}\right)=E_{0}$,
where
P1 (continuity) $g(u, u)=|u|^{4} \quad \mathrm{P} 2$ (symmetry) $g(u, w)=g(w, u)$
P3 (gauge) $g\left(e^{i \alpha} u, e^{i \alpha} w\right)=g(u, w) \forall \alpha \in \mathbb{R}$
P4 $g(u, w)$ is independent on h
P5 $g(u, w)$ is homogeneous quartic polynomial in (u, w)

Constraints on the polynomial functions

The cubic polynomial f :

$$
\begin{aligned}
f & =\alpha_{1}\left|u_{n}\right|^{2} u_{n}+\alpha_{2}\left|u_{n}\right|^{2}\left(u_{n+1}+u_{n-1}\right)+\alpha_{3} u_{n}^{2}\left(\bar{u}_{n+1}+\bar{u}_{n-1}\right) \\
& +\alpha_{4}\left(\left|u_{n+1}\right|^{2}+\left|u_{n-1}\right|^{2}\right) u_{n}+\alpha_{5}\left(\bar{u}_{n+1} u_{n-1}+u_{n+1} \bar{u}_{n-1}\right) u_{n} \\
& +\alpha_{6}\left(u_{n+1}^{2}+u_{n-1}^{2}\right) \bar{u}_{n}+\alpha_{7} u_{n+1} u_{n-1} \bar{u}_{n}+\alpha_{8}\left(\left|u_{n+1}\right|^{2} u_{n+1}+\mid u_{n-1}\right. \\
& +\alpha_{9}\left(u_{n+1}^{2} \bar{u}_{n-1}+\bar{u}_{n+1} u_{n-1}^{2}\right)+\alpha_{10}\left(\left|u_{n+1}\right|^{2} u_{n-1}+\left|u_{n-1}\right|^{2} u_{n+1}\right),
\end{aligned}
$$

The quartic polynomial g :

$$
\begin{aligned}
g=\gamma_{1}\left(\left|\phi_{n}\right|^{2}\right. & \left.+\left|\phi_{n+1}\right|^{2}\right)\left(\bar{\phi}_{n+1} \phi_{n}+\phi_{n+1} \bar{\phi}_{n}\right)+\gamma_{2}\left|\phi_{n}\right|^{2}\left|\phi_{n+1}\right|^{2} \\
& +\gamma_{3}\left(\phi_{n}^{2} \bar{\phi}_{n+1}^{2}+\bar{\phi}_{n}^{2} \phi_{n+1}^{2}\right)+\gamma_{4}\left(\left|\phi_{n}\right|^{4}+\left|\phi_{n+1}\right|^{4}\right),
\end{aligned}
$$

The constraints for existence of reduction:

$$
\alpha_{4}=\alpha_{1}-\alpha_{6}, \quad \alpha_{5}=\alpha_{6}, \quad \alpha_{7}=\alpha_{1}-2 \alpha_{6}, \quad \alpha_{10}=\alpha_{8}-\alpha_{9}
$$

Remarks on conserved quantities

- These constraints are equivalent to the conditions for conservation of the momentum M :

$$
M=i \sum_{n \in \mathbb{Z}}\left(\bar{u}_{n+1} u_{n}-u_{n+1} \bar{u}_{n}\right) .
$$

- These constraints are incompatible with the conditions for existence of the Hamiltonian structure:

$$
i \dot{u}_{n}=\frac{\partial H}{\partial \bar{u}_{n}}, \quad H=\sum_{n \in \mathbb{Z}}\left(\frac{\left|u_{n+1}-u_{n}\right|^{2}}{h^{2}}-F\left(u_{n}, u_{n+1}\right)\right)
$$

- These constraints may provide conservation of the power N

$$
N=a \sum_{n \in \mathbb{Z}}\left|u_{n}\right|^{2}+b \sum_{n \in \mathbb{Z}}\left(\bar{u}_{n+1} u_{n}+u_{n+1} \bar{u}_{n}\right)
$$

Continuous stationary solutions

Initial-value problem for real-valued solutions:

$$
\left\{\begin{array}{l}
\left(\phi_{n+1}-\phi_{n}\right)^{2}=h^{2} \omega \phi_{n} \phi_{n+1}-h^{2} g\left(\phi_{n}, \phi_{n+1}\right), \quad n \in \mathbb{Z}, \\
\phi_{0}=\varphi,
\end{array}\right.
$$

where

$$
g(x, y)=\beta_{1} x^{2} y^{2}+\beta_{2} x y\left(x^{2}+y^{2}\right)+\beta_{3}\left(x^{4}+y^{4}\right)
$$

Solutions of the first-order map

- There exists a unique monotonically decreasing sequence $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ for any $0<\phi_{0}<\sqrt{\omega}$.
- There exists a unique monotonically increasing sequence $\left\{\phi_{n}\right\}_{n=-\infty}^{0}$ for any $0<\phi_{0}<\sqrt{\omega}$.

Solutions of the first-order map

- There exists a unique monotonically decreasing sequence $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ for any $0<\phi_{0}<\sqrt{\omega}$.
- There exists a unique monotonically increasing sequence $\left\{\phi_{n}\right\}_{n=-\infty}^{0}$ for any $0<\phi_{0}<\sqrt{\omega}$.
- There exists a unique single-humped sequence $S_{\text {on }}=\left\{\phi_{n}\right\}_{n=\mathbb{Z}}$ for $\phi_{0}=\phi_{\max }$
- There exists a unique 2 -site top single-humped sequence $S_{\text {off }}=\left\{\phi_{n}\right\}_{n=\mathbb{Z}}$ for $\phi_{0}=\sqrt{\omega}$
- For any $\phi_{0} \in\left(0, \phi_{\max }\right) \backslash\left\{S_{\mathrm{on}}, S_{\text {off }}\right\}$, there exists a unique non-symmetric single-humped sequence $\left\{\phi_{n}\right\}_{n=\mathbb{Z}}$ with $\phi_{k} \neq \phi_{m}$ for all $k \neq m$.

Solutions of the first-order map

$S_{\text {on }}$:

$S_{\text {off }}:$

Traveling solutions

The reduction to the first-order map gives a sufficient condition for existence of the translationally invariant stationary solutions and a necessary condition for existence of traveling solutions near $c=0$. In other words, there exists $\phi(z) \in C^{0}(\mathbb{R})$ such that $\phi_{n}=\phi(h n-s)$ for $n \in \mathbb{Z}$ and $s \in \mathbb{R}$.

Traveling solutions

The reduction to the first-order map gives a sufficient condition for existence of the translationally invariant stationary solutions and a necessary condition for existence of traveling solutions near $c=0$. In other words, there exists $\phi(z) \in C^{0}(\mathbb{R})$ such that $\phi_{n}=\phi(h n-s)$ for $n \in \mathbb{Z}$ and $s \in \mathbb{R}$.

Another necessary condition for existence of traveling solutions is derived (P, Rothos, 2005) near the particular point:

$$
\omega=\frac{\pi-2}{h^{2}}, c=\frac{1}{h}
$$

Reduction to the third-order ODE

Consider a transformation:
$\phi(z)=\frac{\epsilon}{h} \Phi(\zeta) e^{\frac{i \pi z}{2 h}}, \zeta=\frac{\epsilon z}{h}, c=\frac{1+\epsilon^{2} V}{h}, \omega=\frac{\pi-2+\epsilon^{2} \pi V+\epsilon^{3} \Omega}{h^{2}}$
which results in the differential advance-delay equation:
$i\left(\Phi(\zeta+\epsilon)-\Phi(\zeta-\epsilon)-2 \epsilon \Phi^{\prime}(\zeta)\right)=\epsilon^{3}\left(2 i V \Phi^{\prime}(\zeta)+\Omega \Phi(\zeta)\right)-\epsilon^{2} f(\ldots)$

Reduction to the third-order ODE

Consider a transformation:
$\phi(z)=\frac{\epsilon}{h} \Phi(\zeta) e^{\frac{i \pi z}{2 h}}, \zeta=\frac{\epsilon z}{h}, c=\frac{1+\epsilon^{2} V}{h}, \omega=\frac{\pi-2+\epsilon^{2} \pi V+\epsilon^{3} \Omega}{h^{2}}$
which results in the differential advance-delay equation:
$i\left(\Phi(\zeta+\epsilon)-\Phi(\zeta-\epsilon)-2 \epsilon \Phi^{\prime}(\zeta)\right)=\epsilon^{3}\left(2 i V \Phi^{\prime}(\zeta)+\Omega \Phi(\zeta)\right)-\epsilon^{2} f(\ldots)$

Apply Taylor series expansions:

$$
\begin{aligned}
& \Phi(\zeta+\epsilon)-\Phi(\zeta-\epsilon)-2 \epsilon \Phi^{\prime}(\zeta)=\frac{\epsilon^{3}}{3} \Phi^{\prime \prime \prime}(\zeta)+\mathrm{O}\left(\epsilon^{5}\right) \\
& f(\ldots)=\left(\alpha_{1}+2 \alpha_{4}-2 \alpha_{5}-2 \alpha_{6}+\alpha_{7}\right)|\Phi|^{2} \Phi+\mathrm{O}(\epsilon)
\end{aligned}
$$

Reduction to the third-order ODE

Since no single-humped localized solutions exist in

$$
\frac{i}{3} \Phi^{\prime \prime \prime}-2 i V \Phi^{\prime}-\Omega \Phi=|\Phi|^{2} \Phi
$$

the necessary condition for existence of traveling solutions is

$$
\alpha_{1}+2 \alpha_{4}-2 \alpha_{5}-2 \alpha_{6}+\alpha_{7}=0
$$

The truncated third-order ODE is

$$
\frac{i}{3} \Phi^{\prime \prime \prime}-2 i V \Phi^{\prime}-\Omega \Phi+2 i|\Phi|^{2} \Phi^{\prime}+i \gamma \Phi\left(|\Phi|^{2}\right)^{\prime}=0
$$

where γ is parameter.

Translationally invariant dNLS models

Parametrization of the dNLS model which gives translationally invariant solutions at $c=0$ and $c=1 / h$:

$$
\alpha_{1}=2 \alpha_{6}, \alpha_{4}=\alpha_{5}=\alpha_{6}, \alpha_{7}=0, \alpha_{10}=\alpha_{8}-\alpha_{9},
$$

subject to the normalization constraint:

$$
\alpha_{2}+\alpha_{3}+4 \alpha_{6}+2 \alpha_{8}=1 .
$$

Translationally invariant dNLS models

Parametrization of the dNLS model which gives translationally invariant solutions at $c=0$ and $c=1 / h$:

$$
\alpha_{1}=2 \alpha_{6}, \alpha_{4}=\alpha_{5}=\alpha_{6}, \alpha_{7}=0, \alpha_{10}=\alpha_{8}-\alpha_{9},
$$

subject to the normalization constraint:

$$
\alpha_{2}+\alpha_{3}+4 \alpha_{6}+2 \alpha_{8}=1 .
$$

Additional conserved quantities:

- Conservation of power N gives four one-parameter models
- Conservation of density flux gives a two-parameter model

Open questions

Traveling solutions of the third-order ODE:

- $\gamma=0$ - Hirota equation with 2-parameter solutions
- $\gamma=1$ - Sasa-Satsuma equation with 2-parameter solutions
- $\gamma>-1$ - exact 1-parameter solutions (embedded solitons)

Can we prove persistence of any of these solutions in the full differential advance-delay equation?

Numerical approximation of traveling solutions is a work in progress.

