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Discrete nonlinear Schrödinger model
Continuous NLS model

iut = uxx + |u|2u, x ∈ R, u ∈ C

admits traveling pulse solutions

u(x, t) =
√
ω sech(

√
ω(x− 2ct− s)) eic(x−ct)+iωt+iθ,

where ω ∈ R+ and (c, s, θ) ∈ R3.

"Standard" (on-site) discretisation

iu̇n =
un+1 − 2un + un−1

h2
+ |un|2un, n ∈ Z

does not have "true" traveling pulse solutions.
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Reductions for traveling waves
Traveling waves

u1(t) = u0(t− τ)eiθ,

u2(t) = u1(t− τ)eiθ = u0(t− 2τ)e2iθ,

...

un+1(t) = un(t− τ)eiθ = ... = u0(t− nτ)einθ

Traveling solutions

un(t) = φ(z)eiωt, z = hn− ct, c = h/τ, ω = cθ/h.

The differential advanced-delay equation

icφ′(z) =
φ(z + h)− 2φ(z) + φ(z − h)

h2
− ωφ(z) + |φ|2φ
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Obstacles on existence
Classical solutions φ(z) on z ∈ R
• φ(z) is C0(R) if c = 0

• φ(z) is C1(R) if c 6= 0

• φ(z) is a single-humped solution decaying to φ = 0

Properties of "standard" stationary solutions (c = 0):
• φ(z) is piecewise constant on z ∈ R
• φn = φ(nh) is symmetric either about a node or about the

midpoint between two nodes
• No continuous deformation exists between these two particular

solutions (Peierls–Nabarro potential)
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Example of stationary solutions
Stationary solutions in the "standard" discrete NLS model

φn+1 − 2φn + φn−1

h2
− φn + φ3

n = 0, n ∈ Z
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Exceptional discretizations
General discrete NLS equation:

iu̇n =
un+1 − 2un + un−1

h2
+ f(un−1, un, un+1)

where
P1 (continuity) f(u, u, u) = 2|u|2u
P2 (symmetry) f(v, u, w) = f(w, u, v)

P3 (gauge) f(eiαv, eiαu, eiαw) = eiαf(v, u, w) ∀α ∈ R
P4 f(v, u, w) is independent on h
P5 f(v, u, w) is homogeneous cubic polynomial in (v, u, w)

Exceptional nonlinearities are those that support continuous
stationary solutions with c = 0 and φ ∈ C0(R)
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Examples of exceptional discretizations
Ablowitz–Ladik lattice:

f = (un+1 + un−1) |un|2

New 2-parameter lattice:

f = (1− χ− 2η)|un|2(un+1 + un−1) + χu2
n(ūn+1 + ūn−1)

+η(|un+1|2 + |un−1|2)(un+1 + un−1)

Cases (χ, η) = (1
2
, 0) and (χ, η) = (0, 1

2
) are reported in

S. Dmitriev, P. Kevrekidis, A. Sukhorukov, et al.,
Phys. Lett. A 356, 324 (2006)
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Purposes of this work
• Find the most general exceptional nonlinearity from the

reduction of the second-order difference equation to the
first-order difference equation.

• Confirm that this reduction for stationary solutions is
equivalent to conservation of momentum for time-dependent
solutions (Kevrekidis, 2003), where the momentum is

M = i
∑

n∈Z
(ūn+1un − un+1ūn) .

• Prove that this reduction gives a sufficient condition for
existence of translationally invariant stationary solutions.

• Apply the normal form reduction (P, Rothos, 2005) as a
necessary condition for existence of traveling solutions.
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• Prove that this reduction gives a sufficient condition for
existence of translationally invariant stationary solutions.

• Apply the normal form reduction (P, Rothos, 2005) as a
necessary condition for existence of traveling solutions.

Translationally invariantNLS lattices – p. 8/19



Purposes of this work
• Find the most general exceptional nonlinearity from the

reduction of the second-order difference equation to the
first-order difference equation.

• Confirm that this reduction for stationary solutions is
equivalent to conservation of momentum for time-dependent
solutions (Kevrekidis, 2003), where the momentum is

M = i
∑

n∈Z
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Reductions of difference equations
Consider the second-order difference equation

φn+1 − 2φn + φn−1

h2
− ωφn + f(φn−1, φn, φn+1) = 0

and reduce the problem to the first-order difference equation

En =
1

h2
|φn+1−φn|2−

1

2
ω(φnφ̄n+1 + φ̄nφn+1)+g(φn, φn+1) = E0,

where
P1 (continuity) g(u, u) = |u|4 P2 (symmetry) g(u,w) = g(w, u)

P3 (gauge) g(eiαu, eiαw) = g(u,w) ∀α ∈ R
P4 g(u,w) is independent on h
P5 g(u,w) is homogeneous quartic polynomial in (u,w)
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Constraints on the polynomial functions
The cubic polynomial f :

f = α1|un|2un + α2|un|2(un+1 + un−1) + α3u
2
n(ūn+1 + ūn−1)

+ α4(|un+1|2 + |un−1|2)un + α5(ūn+1un−1 + un+1ūn−1)un

+ α6(u2
n+1 + u2

n−1)ūn + α7un+1un−1ūn + α8(|un+1|2un+1 + |un−1|2un−1)

+ α9(u2
n+1ūn−1 + ūn+1u

2
n−1) + α10(|un+1|2un−1 + |un−1|2un+1),

The quartic polynomial g:

g = γ1(|φn|2 + |φn+1|2)(φ̄n+1φn + φn+1φ̄n) + γ2|φn|2|φn+1|2

+γ3(φ2
nφ̄

2
n+1 + φ̄2

nφ
2
n+1) + γ4(|φn|4 + |φn+1|4),

The constraints for existence of reduction:

α4 = α1 − α6, α5 = α6, α7 = α1 − 2α6, α10 = α8 − α9
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Remarks on conserved quantities
• These constraints are equivalent to the conditions for

conservation of the momentum M :

M = i
∑

n∈Z
(ūn+1un − un+1ūn) .

• These constraints are incompatible with the conditions for
existence of the Hamiltonian structure:

iu̇n =
∂H

∂ūn
, H =

∑

n∈Z

( |un+1 − un|2
h2

− F (un, un+1)

)

• These constraints may provide conservation of the power N

N = a
∑

n∈Z
|un|2 + b

∑

n∈Z
(ūn+1un + un+1ūn)
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Continuous stationary solutions
Initial-value problem for real-valued solutions:
{

(φn+1 − φn)2 = h2ωφnφn+1 − h2g(φn, φn+1), n ∈ Z,
φ0 = ϕ,

where

g(x, y) = β1x
2y2 + β2xy(x2 + y2) + β3(x4 + y4)

x

y

ψ0 φ0
0 ω

φ0

ψ0 

ω
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Solutions of the first-order map
• There exists a unique monotonically decreasing sequence
{φn}∞n=0 for any 0 < φ0 <

√
ω.

• There exists a unique monotonically increasing sequence
{φn}0

n=−∞ for any 0 < φ0 <
√
ω.

• There exists a unique single-humped sequence Son = {φn}n=Z
for φ0 = φmax

• There exists a unique 2-site top single-humped sequence
Soff = {φn}n=Z for φ0 =

√
ω

• For any φ0 ∈ (0, φmax)\{Son, Soff}, there exists a unique
non-symmetric single-humped sequence {φn}n=Z with
φk 6= φm for all k 6= m.
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Solutions of the first-order map
Son:

Soff :
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Traveling solutions
The reduction to the first-order map gives a sufficient condition for
existence of the translationally invariant stationary solutions and a
necessary condition for existence of traveling solutions near c = 0.
In other words, there exists φ(z) ∈ C0(R) such that φn = φ(hn− s)
for n ∈ Z and s ∈ R.

Another necessary condition for existence of traveling solutions is
derived (P, Rothos, 2005) near the particular point:

0 0.5 1
−4

−2

0

2

c

ω ω =
π − 2

h2
, c =

1

h

Translationally invariantNLS lattices – p. 15/19



Traveling solutions
The reduction to the first-order map gives a sufficient condition for
existence of the translationally invariant stationary solutions and a
necessary condition for existence of traveling solutions near c = 0.
In other words, there exists φ(z) ∈ C0(R) such that φn = φ(hn− s)
for n ∈ Z and s ∈ R.

Another necessary condition for existence of traveling solutions is
derived (P, Rothos, 2005) near the particular point:

0 0.5 1
−4

−2

0

2

c

ω ω =
π − 2

h2
, c =

1

h

Translationally invariantNLS lattices – p. 15/19



Reduction to the third-order ODE
Consider a transformation:

φ(z) =
ε

h
Φ(ζ)e

iπz
2h , ζ =

εz

h
, c =

1 + ε2V

h
, ω =

π − 2 + ε2πV + ε3Ω

h2

which results in the differential advance-delay equation:

i (Φ(ζ + ε)− Φ(ζ − ε)− 2εΦ′(ζ)) = ε3 (2iV Φ′(ζ) + ΩΦ(ζ))−ε2f(...)

Apply Taylor series expansions:

Φ(ζ + ε)− Φ(ζ − ε)− 2εΦ′(ζ) =
ε3

3
Φ′′′(ζ) + O(ε5),

f(...) = (α1 + 2α4 − 2α5 − 2α6 + α7) |Φ|2Φ + O(ε).
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Reduction to the third-order ODE
Since no single-humped localized solutions exist in

i

3
Φ′′′ − 2iV Φ′ − ΩΦ = |Φ|2Φ,

the necessary condition for existence of traveling solutions is

α1 + 2α4 − 2α5 − 2α6 + α7 = 0.

The truncated third-order ODE is

i

3
Φ′′′ − 2iV Φ′ − ΩΦ + 2i|Φ|2Φ′ + iγΦ(|Φ|2)′ = 0,

where γ is parameter.
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Translationally invariant dNLS models
Parametrization of the dNLS model which gives translationally
invariant solutions at c = 0 and c = 1/h:

α1 = 2α6, α4 = α5 = α6, α7 = 0, α10 = α8 − α9,

subject to the normalization constraint:

α2 + α3 + 4α6 + 2α8 = 1.

Additional conserved quantities:

• Conservation of power N gives four one-parameter models
• Conservation of density flux gives a two-parameter model
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Open questions
Traveling solutions of the third-order ODE:
• γ = 0 - Hirota equation with 2-parameter solutions
• γ = 1 - Sasa-Satsuma equation with 2-parameter solutions
• γ > −1 - exact 1-parameter solutions (embedded solitons)

Can we prove persistence of any of these solutions in the full
differential advance-delay equation?

Numerical approximation of traveling solutions is a work in
progress.
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