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The Kadomtsev–Petviashvili (KP) equation

It is a 2D generalization of the Korteweg-de Vries (KdV) equation:

(ut + 6uux + uxxx)x = ±uyy .

The plus/minus sign corresponds to KP-I/KP-II equations.
KP stands for B. Kadomtsev and V.I. Petviashvili, who derived this
equation in 1970 to study transverse stability of 1D travelling waves.

Each sign is applicable as a model for fluid dynamics:

KP-I for high surface tension (e.g., oil);

KP-II for low surface tension (e.g., water).
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1D periodic travelling waves

1D wave satisfies the KdV equation

ut + 6uux + uxxx = 0.

Periodic travelling waves u = φ(x + ct) are found from the second-order
ODE:

cφ(x) + 3φ(x)2 + φ′′(x) = 0,

solutions are available in the cnoidal form with the Jacobian elliptic
function cn.

KdV cnoidal waves are linearly and nonlinearly stable:

N. Bottman, B. Deconinck, DCDS A (2009)

B. Deconinck, T. Kapitula, Physics Letters A (2010)

M. Nivala, B. Deconinck, Physica D (2010)
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Transverse stability of periodic waves

Transverse stability of periodic waves is determined for small 2D
perturbations w :

(wt + cwx + 6(φ(x)w)x + wxxx)x = ±wyy .

or for w(x , y , t) = W (x)eλt+ipy by the spectral problem

λWx + cWxx + 6(φ(x)W )xx + Wxxxx ± p2W = 0.

Functional-analytic results in the recent literature:

KP-I: Periodic and solitary waves are transversely unstable
[Johnson–Zumbrun (2010); Rousset–Tzvetkov (2011); Hakkaev (2012)]

KP-II: Solitary waves are transversely stable
[Mizumachi–Tzvetkov (2012); T. Mizumachi (2015) (2017)]

KP-II: Stability of periodic waves is open [M. Haragus (2010)].
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Main result for KP-II

Rewrite the spectral problem as Ac,p(λ)W = 0, where

Ac,p(λ)W := λWx + cWxx + 6(φ(x)W )xx + Wxxxx − p2W .

Theorem (M.Haragus–J.Li–D.P, 2017)

For every p 6= 0, the linear operator Ac,p(λ) is invertible in Cb(R) for any

λ ∈ C with Reλ > 0. Consequently, the periodic travelling wave is

transversely spectrally stable with respect to 2D bounded perturbations.

Forgotten results on spectral transverse stability of periodic waves in KP-II:

E.A. Kuznetsov, M.D. Spector, and G. E. Falkovich, Physica D (1984).

M.D. Spector, Sov. Phys. JETP (1988).

Eigenfunctions of spectral problem are computed explicitly and
completeness of eigenfunction is analyzed formally.
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KP-II as an integrable evolution equation

KP-II
(ut + 6uux + uxxx)x + uyy = 0.

is integrable in the sense of the inverse scattering transform method

The (smooth) solution u(x , y , t) is a potential of the Lax operator pair

L(u)ψ = ψy − ψxx − uψ = λψ,
∂ψ

∂t
= A(u, λ)ψ,

such that λ is (x , y , t)-independent. The Cauchy problem can be
solved by a sequence of direct and inverse scattering transforms.

Infinitely many conserved quantities exist for smooth solutions.

Bäcklund–Darboux transformation (dressing method) allows to
construct many exact solutions.

V.E.Zakharov–A.B.Shabat (1974), M.J.Ablowitz–A.S.Fokas (1984), + ∞.
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Conserved quantities for KP-II equation

KP-II
(ut + 6uux + uxxx)x + uyy = 0.

is a Hamiltonian system with conserved momentum

Q(u) =
1

2

∫

u2dxdy

and energy

E (u) =
1

2

∫

[

u2

x − 2u3 − (∂−1

x uy )
2
]

dxdy .

In particular,

∂u

∂t
=

∂

∂x

δE

δu
, where

δE

δu
= −uxx − 3u2 − ∂−2

x uyy .

E (u) is sign-indefinite near u = 0 ⇒ the energy method does not work
for global well-posedness of KP-II in energy space.
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Transverse spectral stability for periodic perturbations

Let φ(x + 2π) = φ(x), c > 1 be the periodic wave of KdV. Then, it is a
critical point of E (u)− cQ(u). Consider the spectral problem

Ac,p(λ)W = λWx + cWxx + 6(φ(x)W )xx + Wxxxx − p2W = 0,

for p 6= 0 and Re(λ) > 0. If W ∈ L2
per

(0, 2π) is a solution for p 6= 0, then

W ∈ L̇2
per

(0, 2π), the zero-mean subspace of L2
per

(0, 2π).

Recall that ∂−1
x is a bounded operator from L̇2

per
(0, 2π) to L̇2

per
(0, 2π) and

rewrite Ac,p(λ)W = 0 formally as

λW = ∂xLc,pW , Lc,p := −∂2

x − c − 6φ(x) + p2∂−2

x .

The operator Lc,p : H2
per

(0, 2π) → L2(0, 2π) is self-adjoint,
In fact, Lc,p is the Hessian operator of E (u)− cQ(u).
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Spectral problem for periodic perturbations

The spectral problem is defined in L̇2
per

(0, 2π),

λW = ∂xLc,pW , Lc,p := −∂2

x − c − 6φ(x) + p2∂−2

x .

hence, strictly speaking, we shall write Π0Lc,pΠ0, where
Π0 : L2

per
(0, 2π) → L̇2

per
(0, 2π) is the orthogonal projection operator.

Theorem (J.Bronski–M.Johnson–T.Kapitula, 2011)

If σ(Π0Lc,pΠ0) ≥ 0, then no λ ∈ C with Reλ > 0 exists.

Let us check the case c = 1, when φ = 0. The spectrum of Π0Lc=1,pΠ0 is

σ(Π0Lc=1,pΠ0) = {n2 − 1 − p2n−2, n ∈ N}.

For each n ∈ N, there is a sufficiently large p ∈ R such that
n2 − 1 − p2n−2 < 0. The theorem above can not be applied.
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Spectral stability in 1D: p = 0
Similar problems occur in 1D, for the KdV equation, when perturbations
are extended on the infinite line. Consider the spectral problem

λW = ∂xLc,p=0W , Lc,p=0 := −∂2

x − c − 6φ(x),

where the perturbation W is defined in L2(R).

By using the Floquet theory for operators with 2π-periodic coefficients, we
consider the periodic spectral problem

λW̃ = (∂x + iγ)Lc,p=0(γ)W̃ , Lc,p=0(γ) := −(∂x + iγ)2 − c − 6φ(x),

where the perturbation W̃ is now defined in L2
per

(0, 2π) and γ ∈ [0, 1).
Then, σ(∂xLc,p=0) in L2(R) is the union of {σ((∂x + iγ)Lc,p=0(γ))}γ∈[0,1).

For c = 1, φ = 0,

σ(Lc=1,p=0(γ)) = {(n + γ)2 − 1, n ∈ N}, γ ∈ (0, 1).

The bands with n = −1 and n = 0 are negative. The same problem.
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An approach to prove orbital stability for KdV in 1D
Consider the higher-order energy

R(u) =

∫

[

u2

xx − 10uu2

x + 5u4
]

dx .

which is constant for solutions of the KdV in H2. The periodic wave φ is
also a critical point of R(u)− c2Q(u) and the associated Hessian operator

Mc,p=0 = ∂4

x + 10∂xφ(x)∂x − 10cφ(x)− c2.

Mc,p=0 is not positive either. However,...

Proposition (B.Deconinck–T.Kapitula, 2010)

For every c > 1, the operator Mc,p=0 − bLc,p=0 is positive for every

b ∈ (b−(c), b+(c)), where

b−(c) =

[

5

3
+

1 − 2k2

3
√

1 − k2 + k4

]

c, b+(c) =

[

5

3
+

1 + k2

3
√

1 − k2 + k4

]

c,

where k ∈ (0, 1) is the elliptic modulus for the cnoidal periodic waves.
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A simple perturbative argument
For c = 1 and φ = 0, we have

Lc=1,p=0 = −∂2

x − 1,

Mc=1,p=0 = ∂4

x − 1.

Therefore, the linear combination of the two Hessian operators

Mc,p=0 − bLc,p=0 = ∂4

x + b∂2

x + b − 1 =

(

∂2

x +
b

2

)2

−
(

1 − b

2

)2

is positive if b = 2. By perturbative computations, one can find a
nonempty interval (b−(c), b+(c)) near b = 2 for c > 1.

From positivity of the combined Hessian operator and energy conservation
of

Λb(u) := [R(u)− c2Q(u)]− b[E (u)− cQ(u)], e.g. b = 2c,

orbital stability of 1D periodic waves in the KdV holds in Sobolev space
H2

per
for any subharmonic periodic perturbation.
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Higher-order energy for KP-II equation

Recall the momentum and energy for KP-II:

Q(u) =

∫

u2dxdy , E (u) =

∫

[

u2

x − 2u3 − (∂−1

x uy )
2
]

dxdy .

Periodic wave φ is a critical point of E (u)− cQ(u).

Proposition (L.Molinet–J-C.Saut–N.Tzvetkov, 2007)

KP-II conserves the higher-order energy in H2:

R(u) =

∫
[

u2

xx
− 10uu2

x
+ 5u4 − 10

3
u2

y
+

5

9
(∂−2

x
uyy )

2 +
10

3
u2∂−2

x
uyy + ...

]

dxdy .

Periodic wave φ is a critical point of R(u)− c2Q(u). However, no b exists
so that φ is a minimum of [R(u)− c2Q(u)]− b[E (u)− cQ(u)].
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New approach - commuting linear operators

Recall the spectral problem in L̇2
per

(0, 2π):

λW = ∂xLc,pW , Lc,p := −∂2

x − c − 6φ(x) + p2∂−2

x .

Let us search for a self-adjoint operator Mc,p in L̇2
per

(0, 2π) such that

Lc,p∂xMc,p = Mc,p∂xLc,p.

Theorem (M.Haragus–J.Li–D.P, 2017)

Assume that Mc,p ≥ 0 and the kernel of Mc,p is contained in the kernel of

Lc,p. The spectrum of ∂xLc,p in L̇2
per

(0, 2π) is purely imaginary.
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An elementary proof

Theorem (M.Haragus–J.Li–D.P, 2017)

Assume that Mc,p ≥ 0 and the kernel of Mc,p is contained in the kernel of

Lc,p. The spectrum of ∂xLc,p in L̇2
per

(0, 2π) is purely imaginary.

Let λ0 ∈ C with Reλ0 6= 0 be a simple eigenvalue of the spectral problem:

λ0W0 = ∂xLc,pW0, W0 ∈ D(∂xLc,p) ⊂ L̇2

per
(0, 2π).

Assume that W0 ∈ D(Lc,p∂xMc,p) and Lc,p∂xMc,p = Mc,p∂xLc,p. Then,

λ0〈Mc,pW0,W0〉L2 = 〈Mc,pW0, ∂xLc,pW0〉L2 = −〈Lc,p∂xMc,pW0,W0〉L2

= −〈Mc,p∂xLc,pW0,W0〉L2 = −λ0〈Mc,pW0,W0〉L2 ,

and since λ0 + λ0 6= 0, then 〈Mc,pW0,W0〉L2 = 0. Since Mc,p ≥ 0, then
W0 ∈ ker(Mc,p)) but then W0 ∈ ker(Lc,p) so that λ0 = 0.
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Algorithmic search of the commuting operator

From the existence of the higher-order variational problem R(u)− c2Q(u)
associated with the higher-order energy of KP-II, we have one option for
operator Mc,p:

Mc,p = ∂4

x + 10∂xφ(x)∂x − 10cφ(x)− c2

−10

3
p2

(

1 + φ(x)∂−2

x + ∂−1

x φ(x)∂−1

x + ∂−2

x φ(x)
)

+
5

9
p4∂−4

x .

Then, Lc,p∂xMc,p = Mc,p∂xLc,p. However,

Proposition

For every p 6= 0, no value of b ∈ R exists such that Mc,p − bLc,p is positive

in L2(R).

This outcome is related to bad (sign-indefinite) properties of E (u) and
R(u) near u = 0.
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Algorithmic search of the commuting operator
Let us search for another operator Mc,p to satisfy the commutability
relation

Lc,p∂xMc,p = Mc,p∂xLc,p.

By using symbolic computations, we have found

Mc,p = ∂4

x + 10∂xφ(x)∂x − 10cφ(x)− c2 +
5

3
p2

(

1 + c∂−2

x

)

.

Then,

Mc,p − bLc,p = Mc,p=0 − bLc,p=0 +
5

3
p2 −

(

b − 5c

3

)

p2∂−2

x .

Proposition

The operator Mc,p − 2cLc,p is positive in L2(R) for every p ∈ R.

The periodic travelling wave v of the KP-II equation is spectrally stable
with respect to two-dimensional bounded perturbations.
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Conclusion

Energy method does not work for KP-II.

Spectral stability is obtained from commuting linear operators via
symplectic structure.

Linear orbital stability is obtained from coercivity of the quadratic
form associated with the commuting linear operators.

〈(Mc − 2cLc)W ,W 〉L2
per

≥ C‖W ‖2

L2
per

, 〈W , φ′〉L2
per

= 0.

for W ∈ L2
per

((0, 2πN)× (0, L)) for every N ∈ N and every L > 0.
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Open questions

How is Mc,p related to conserved quantities of the KP-II?

Can we extend the proof to nonlinear orbital stability of periodic waves
in the KP-II?

Can we find commuting linear operators for non-integrable versions of
nonlinear evolution equations?
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