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Standard discrete ¢* model

¢* model: uy — uy, + su(l — u?) admits kink solutions.
‘Standard’ discretisation:

Unp+1 — 2un + Up—1 1 2
e — §un(1 — u;)

Uy =
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e — §un(1 — u;)

Uy =

Kinks describe
* domain walls in ferroelectrics and ferromagnets,

* topological excitations in biological macromolecules and
hydrogen-bonded chains and

* bond-rotation mismatches in polymers.

Travelling kinks in discrete ¢4 models — p. 2/2



Exceptional discretizations

. Up+1 — 2un + Up—1
Uy —

+ f(un—la Unp, un+1)

B2
wheref(w, 1, Uy, Upi1) =
1 ,
Bender/Tovbis: 1 (Unt1 + Un—1) (1 —uy),
. 1
Kevrekidis: 2 (Unt1 +un—1) (2—uiiq —up_q).

All support continuous stationary kinks, in contrast to skendard
model.
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Purpose of thiswork

We want to answer the questions:

* Does the elimination of the Pelerls-Nabarro barrier (in
Speight’'s model) cause the kink’s radiation to disappear?

* Does the momentum conservation of the Bender/Tovbis and
Kevrekidis models imply the existence of steadily moving
kinks?

l.e. does

existence of a translation mode
—
Kinks can propagate through the lattice without
radiative deceleration?
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Advance-delay eqguation

Make the travelling wave ansatz:
up(t) = ¢(2),  z=h(n—s)—d,

whereg(z) is assumed to be a twice differentiable function of
z € R. Leads to the advance-delay equation:

plz+h)=2¢(z) + 9z —h) 1
12 T §¢(2)

— Q(¢(z —h),9(2),0(z + 1)) .

2¢/(2) =
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Advance-delay equation

Make the travelling wave ansatz:
up(t) = ¢(2),  z=h(n—s)—d,

whereg(z) is assumed to be a twice differentiable function of
z € R. Leads to the advance-delay equation:

—Q(¢(z — h),9(2),¢(z + 1)) .

Cubic polynomia!
All linear terms can be reduced {@(z) by rescalingh.
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Regular perturbation expansion

Expand

¢(z £ h) Z ¢(n) )i and (= Zh2”<b2n



Regular perturbation expansion

Expand
() ( 5
d(z+ h) = 7;0 ¢ n( Jpm and O(z Zh%%
O(hO)

1
(1 — 02)¢g -+ §¢0(1 — ¢g) =0; = ¢0(Z) — tanh 2\/1_—62



Regular perturbation expansion

Expand
bz £ h) = i gb@z'(z) Kt and ¢(z) = i h2" o (2).
n=0 ' n=0
O(h):
(1= @)+ Sou(1 = 3) =0; = 6u(2) = tanh ~ o

O(h?™):
Lo,, = (0oddinhomogeneous terms)

Whereﬁz—%—l—ll—GsechQG; 0= 7=



Radiation?

To all orders, the perturbation expansion exists afxd decays to
+1 as|z| — oo.
.. ho radiation?
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Radiation?

To all orders, the perturbation expansion exists afxd decays to
+1 as|z| — oo.

.. ho radiation?
Radiation liesbeyond all orderef the perturbation expansion.

Resonant radiation:

0.8 |
d(z) = £1 + ee™**/h o6l 12 . K ]
|E Slng‘
has wavenumbe¥r where 0.4 |
9 L 0.2 + |
‘Esin—':]c\ ash — 0. [\ N\

27 4m o6m 87 107w 127 14w
k
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‘Inner’ equation

ldea of Kruskal and Segur:
Continue into the complex
plane. Strong coupling to
radiation near poles of the
leading-order solution.

Scaling transformation: = h¢ + inv/1 — ¢2, ¢(z) = +9(¢) leads
to ‘inner’ equation:

() = B(C+1) = 26(0) + V(¢ — 1
— QIC — 1), B(Q) B+ 1)+ (0)
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|nner asymptotic series

We expand the inner solution in powers/af(“inner asymptotic
expansion”):

12(() — {DO(C) + Z h%{an(C)-

Continuation of the first few orders of the outer solutionhe tnner
region motivates the search for the leading-order innert®ol as:

@)

(O =3

n=0
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Borel-L aplace transform

Magnitude of the radiation can be determined by Borel-sutiima
of the asymptotic series (Pomeau, Ramani & Grammaticos).

Introduce the Laplace transforim({) = / Vo(p)e Podp. The

8
resulting integral equation,

(4 sinh” g — c2p2) Vo(p)

(Vo(p) * Vi (p) = Vi (p) (‘standard’)
= 4 Vo(p) cosh(p) * Vo(p) * Vo(p) ~ (Bender-Tovbis)
etc. ..

N

whereV'(p) = W (p) = / V(p— p)W(p1)dps.
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Singularities

Imp
Singularities Wher+gsinh§ = |c|. - e
p 22k1
* Imaginary zeros: Lep = ¢k and !
see the previous graph...
° If ¢ # 0: py — £2 cosh (%R) as JtR1
Pr — OC.
WO = [V .
8 Re(gr—r}—oo wOu <C) 0 Rep

Re(¢)—+o0
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Singularities

v, | Imp
Singularities Wher%smhg = |c[. \ _—
(2,51
* Imaginary zeros: Let = ik and Y
see the previous graph... \
° If ¢ # 0: py — x2cosh (E2) as _@ikl
Pr — OC.
(O = [ Volwedp
~ Rep

Yos(¢) — You(C) = 2mi » res [Vo(p)e™]
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Singularities of V4 (p)

Assume the following leading-order behavioun@fp):

Vo(p) — ki K1(c)/(p® + ki)
Then

¢03(C) _ 2?Ou(C) — [Wlel(c) I O(l/c)]e—ile

Virtue of the integral formulation:

Residue of the first pole = ik£; can be deduced from a

power-series solutionyhich converges foip| < k. Allows for
efficient numerical computation.
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Power-series expansions

Expanding the expressions for the poled/gip) asp — +ik;:

—>K1 i nk 2n 2n

n=0
This coincides with the — oo behaviour of a power-series
solutionVy(p) = > 2 va,p°™ (convergent forp| < k).

Uy, are obtained by substituting the power-series into the
Integral equation and deriving a recurrence relation betwes
coefficients.

Then K (c) can be obtained as a numerical limit.
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Computation of Stokes constants

Ki(c) = lim w, where w, = (—1)"k"vs,.

n—oo

Convergence ofv,, Is very slow:

w, = 1,(c) + 29 4 o (%)

T

Kevrekidis’ model withc = 0.5:

I I I I

0.0195

2
Aest — — N (wn — wn—l) JULA
0.0193
0.0192 +
0.0191 -

0 2000 4000 6000 8000 10000
n

We useAqs/n as an error
estimate for the numerical
limit.
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Stokes Constant

Speight’s discretization
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Stokes Constant

Bender& Tovbhis’ discretization

Ki(c)
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Stokes Constant

Kevrekidis’ discretization
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Radiationless travelling kinks?

* Zerosc = ¢, of Ki(c) lie in the regionc > 0.22, where there is
only one resonance,= +ik;.

* Probably means that a family of travelling kinks exists glan
one-parameter curve on thie, ¢) plane that passes through the
point (0, ¢,).
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Radiationless travelling kinks?

* Zerosc = ¢, of Ki(c) lie in the regionc > 0.22, where there is
only one resonance,= +ik;.

* Probably means that a family of travelling kinks exists glan
one-parameter curve on thie, ¢) plane that passes through the
point (0, ¢,).

* To verify: solve the differential advance-delay equation
numerically: Interval lengtRL = 200; anti-periodic boundary
conditionsg(L) = —¢(—L); iterative Newton’s method with
the continuum kink as starting guess; eigth-order
finite-difference approximation to the second derivatstep
sizeh /10.
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Radiationlesstravelling kinks

Speight’s model

x 1010
25 | | |
51, ¢, = 0.453252694 .
o h = 0.8 +
1.5 - LT -
1| i + + * ]
0.5 - T, . .
+ +
O | ! |
—10 -5 0 5 10 x10~°
C — Cy

— Plotting the average df(z) — ¢...]” over the last 20 units of
the interval.
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Conclusions

* “Effective translation invariance” is not enough to enstinat
kinks can travel without the emission of radiation, althiouig
does seem to reduce the radiation drastically.

* There are some isolated velocities in Speight’s and Kedrgki

models at which kinks can travel without losing energy to
radiation.

* Problematic to consider beyond-all-orders expansion wegps
of 2.

Travelling kinks in discrete q§4 models — p. 23/2



	Standard discrete $phi ^4$ model
	Standard discrete $phi ^4$ model
	Standard discrete $phi ^4$ model
	Standard discrete $phi ^4$ model
	Standard discrete $phi ^4$ model
	Standard discrete $phi ^4$ model

	Exceptional discretizations
	Purpose of this work
	Purpose of this work
	Purpose of this work

	Advance-delay equation
	Advance-delay equation
	Advance-delay equation

	Regular perturbation expansion
	Regular perturbation expansion
	Regular perturbation expansion

	Radiation?
	Radiation?
	Radiation?
	Radiation?

	`Inner' equation
	Inner asymptotic series
	Inner asymptotic series

	Exponential Expansion
	Exponential Expansion
	Exponential Expansion

	Borel-Laplace transform
	Borel-Laplace transform

	Singularities
	Singularities
	Singularities

	Singularities of $V_0(p)$
	Singularities of $V_0(p)$

	Power-series expansions
	Power-series expansions
	Power-series expansions
	Power-series expansions

	Continuation back to the real axis
	Continuation back to the real axis
	Continuation back to the real axis

	Radiation tail
	Radiation tail
	Radiation tail

	General cubic model
	Recurrence relation
	Computation of Stokes constants
	Stokes Constant
	Stokes Constant
	Stokes Constant
	Stokes Constant

	Radiationless travelling kinks?
	Radiationless travelling kinks?
	Radiationless travelling kinks?

	Radiationless travelling kinksphantom {?}
	Conclusions



