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Standard discrete φ4 model

φ4 model:utt − uxx + 1
2
u(1 − u2) admits kink solutions.

‘Standard’ discretisation:

ün =
un+1 − 2un + un−1

h2 +
1

2
un(1 − u2

n)
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Standard discrete φ4 model

φ4 model:utt − uxx + 1
2
u(1 − u2) admits kink solutions.

‘Standard’ discretisation:

ün =
un+1 − 2un + un−1

h2 +
1

2
un(1 − u2

n)

Kinks describe
• domain walls in ferroelectrics and ferromagnets,
• topological excitations in biological macromolecules and

hydrogen-bonded chains and
• bond-rotation mismatches in polymers.
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Exceptional discretizations

ün =
un+1 − 2un + un−1

h2
+ f(un−1, un, un+1)

wheref(un−1, un, un+1) =

Speight:
1

12
(2un + un+1)

(

1 − u2
n + unun+1 + u2

n+1

3

)

+
1

12
(2un + un−1)

(

1 − u2
n + unun−1 + u2

n−1

3

)

,

Bender/Tovbis:
1

4
(un+1 + un−1)

(

1 − u2
n

)

,

Kevrekidis:
1

8
(un+1 + un−1)

(

2 − u2
n+1 − u2

n−1

)

.

All support continuous stationary kinks, in contrast to thestandard
model.
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Purpose of this work

We want to answer the questions:
• Does the elimination of the Peierls-Nabarro barrier (in

Speight’s model) cause the kink’s radiation to disappear?
• Does the momentum conservation of the Bender/Tovbis and

Kevrekidis models imply the existence of steadily moving
kinks?

i.e. does

existence of a translation mode
⇒

kinks can propagate through the lattice without
radiative deceleration?
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Advance-delay equation

Make the travelling wave ansatz:

un(t) = φ(z), z = h(n − s) − ct,

whereφ(z) is assumed to be a twice differentiable function of
z ∈ R. Leads to the advance-delay equation:

c2φ′′(z) =
φ(z + h) − 2φ(z) + φ(z − h)

h2
+

1

2
φ(z)

− Q (φ(z − h), φ(z), φ(z + h)) .
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Advance-delay equation

Make the travelling wave ansatz:

un(t) = φ(z), z = h(n − s) − ct,

whereφ(z) is assumed to be a twice differentiable function of
z ∈ R. Leads to the advance-delay equation:

Cubic polynomial

c2φ′′(z) =
φ(z + h) − 2φ(z) + φ(z − h)

h2
+

1

2
φ(z)

− Q (φ(z − h), φ(z), φ(z + h)) .

All linear terms can be reduced to1
2
φ(z) by rescalingh.
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Regular perturbation expansion

Expand

φ(z ± h) =
∞

∑

n=0

φ(n)(z)

n!
hn and φ(z) =

∞
∑

n=0

h2nφ2n(z).

Travelling kinks in discrete φ4 models – p. 6/23



Regular perturbation expansion

Expand

φ(z ± h) =
∞

∑

n=0

φ(n)(z)

n!
hn and φ(z) =

∞
∑

n=0

h2nφ2n(z).

O(h0):

(1 − c2)φ′′
0 +

1

2
φ0(1 − φ2

0) = 0; ⇒ φ0(z) = tanh
z

2
√

1 − c2
.
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Regular perturbation expansion

Expand

φ(z ± h) =
∞

∑

n=0

φ(n)(z)

n!
hn and φ(z) =

∞
∑

n=0

h2nφ2n(z).

O(h0):

(1 − c2)φ′′
0 +

1

2
φ0(1 − φ2

0) = 0; ⇒ φ0(z) = tanh
z

2
√

1 − c2
.

O(h2n):
Lφ2n = (oddinhomogeneous terms)

whereL = − d2

dθ2 + 4 − 6 sech2 θ; θ = z
2
√

1−c2
.
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Radiation?

To all orders, the perturbation expansion exists andφ(z) decays to
±1 as|z| → ∞.

∴ no radiation?
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Radiation?

To all orders, the perturbation expansion exists andφ(z) decays to
±1 as|z| → ∞.

∴ no radiation?
Radiation liesbeyond all ordersof the perturbation expansion.

Resonant radiation:

φ(z) = ±1 + εeikz/h

has wavenumberk where
∣
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∣

∣
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∣

∣

∣
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‘Inner’ equation

Idea of Kruskal and Segur:
Continue into the complex
plane. Strong coupling to
radiation near poles of the
leading-order solution.

| tanh θ|
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Scaling transformation:z = hζ + iπ
√

1 − c2, φ(z) = 1
h
ψ(ζ) leads

to ‘inner’ equation:

c2ψ′′(ζ) = ψ(ζ + 1) − 2ψ(ζ) + ψ(ζ − 1)

− Q (ψ(ζ − 1), ψ(ζ), ψ(ζ + 1)) +
h2

2
ψ(ζ).
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Inner asymptotic series

We expand the inner solution in powers ofh2 (“inner asymptotic
expansion”):

ψ̂(ζ) = ψ̂0(ζ) +
∞

∑

n=1

h2nψ̂2n(ζ).

Continuation of the first few orders of the outer solution to the inner
region motivates the search for the leading-order inner solution as:

ψ̂0(ζ) =
∞

∑

n=0

a2n

ζ2n+1
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Borel-Laplace transform

Magnitude of the radiation can be determined by Borel-summation
of the asymptotic series (Pomeau, Ramani & Grammaticos).

Introduce the Laplace transformψ0(ζ) =

∫

γ

V0(p)e−pζdp. The

resulting integral equation,

(

4 sinh2 p

2
− c2p2

)

V0(p)

=











V0(p) ∗ V0(p) ∗ V0(p) (‘standard’)

V0(p) cosh(p) ∗ V0(p) ∗ V0(p) (Bender-Tovbis)

etc. . .

whereV (p) ∗ W (p) =

∫ p

0

V (p − p1)W (p1)dp1.
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Singularities

Singularities where
∣

∣

∣

2
p
sinh p

2

∣

∣

∣
= |c|.

• Imaginary zeros: Letp = ik and
see the previous graph...

• If c 6= 0: pI → ±2
c
cosh

(

pR

2

)

as
pR → ∞.

ψ0(ζ) =

∫

γ

V0(p)e−pζdp

Im p
γu γs

Rep

ik1

2ik1

lim
Re(ζ)→+∞

ψ0s(ζ) = 0

lim
Re(ζ)→−∞

ψ0u(ζ) = 0
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Singularities

Singularities where
∣

∣

∣

2
p
sinh p

2

∣

∣

∣
= |c|.

• Imaginary zeros: Letp = ik and
see the previous graph...

• If c 6= 0: pI → ±2
c
cosh

(

pR

2

)

as
pR → ∞.

ψ0(ζ) =

∫

γ

V0(p)e−pζdp

Im p
γu γs

Rep

γ′

s

ik1

2ik1

ψ0s(ζ) − ψ0u(ζ) = 2πi
∑

res
[

V0(p)e−pζ
]
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Singularities of V0(p)

Assume the following leading-order behaviour ofV0(p):

V0(p) → k2
1K1(c)/(p

2 + k2
1)

Then

ψ0s(ζ) − ψ0u(ζ) = [πk1K1(c) + O(1/ζ)]e−ik1ζ

Virtue of the integral formulation:
Residue of the first polep = ik1 can be deduced from a
power-series solution,which converges for|p| < k1. Allows for
efficient numerical computation.
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Power-series expansions

• Expanding the expressions for the poles ofV0(p) asp → ±ik1:

V0(p) → K1(c)
∞

∑

n=0

(−1)nk−2n
1 p2n

• This coincides with then → ∞ behaviour of a power-series
solutionV0(p) =

∑∞
n=0 v2np

2n (convergent for|p| < k1).
• v2n are obtained by substituting the power-series into the

integral equation and deriving a recurrence relation between its
coefficients.

• ThenK1(c) can be obtained as a numerical limit.
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Computation of Stokes constants

K1(c) = lim
n→∞

wn where wn = (−1)nk2n
1 v2n.

Convergence ofwn is very slow:

wn = K1(c) +
A(c)

n
+ O

(

1

n2

)

Aest = −n2(wn − wn−1)

We useAest/n as an error
estimate for the numerical
limit.

Kevrekidis’ model withc = 0.5:

wn − A1est/n
wn

n
10 0008 0006 0004 0002 0000

0.0195

0.0194

0.0193

0.0192

0.0191
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Stokes Constant

Standard nonlinearity
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Stokes Constant

Speight’s discretization
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Stokes Constant

Bender& Tovbis’ discretization

c

K
1
(c

)

10.90.80.70.60.50.40.30.20.10

8

7

6

5

4

3

2

1

0

Travelling kinks in discrete φ4 models – p. 20/23



Stokes Constant

Kevrekidis’ discretization

c

K
1
(c

)

10.90.80.70.60.50.40.30.20.10

0.1

0.05

0

−0.05

−0.1

Travelling kinks in discrete φ4 models – p. 20/23



Radiationless travelling kinks?

• Zerosc = c∗ of K1(c) lie in the regionc > 0.22, where there is
only one resonance,p = ±ik1.

• Probably means that a family of travelling kinks exists along a
one-parameter curve on the(h, c) plane that passes through the
point (0, c∗).

Travelling kinks in discrete φ4 models – p. 21/23



Radiationless travelling kinks?

• Zerosc = c∗ of K1(c) lie in the regionc > 0.22, where there is
only one resonance,p = ±ik1.

• Probably means that a family of travelling kinks exists along a
one-parameter curve on the(h, c) plane that passes through the
point (0, c∗).

• To verify: solve the differential advance-delay equation
numerically: Interval length2L = 200; anti-periodic boundary
conditionsφ(L) = −φ(−L); iterative Newton’s method with
the continuum kink as starting guess; eigth-order
finite-difference approximation to the second derivative,step
sizeh/10.
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Radiationless travelling kinks

Speight’s model
×10−10

×10−6

h = 0.8
c∗ = 0.453252694

c − c∗
1050−5−10

2.5

2

1.5

1

0.5

0

−→ Plotting the average of[φ(z) − φave]
2 over the last 20 units of

the interval.
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Conclusions
• “Effective translation invariance” is not enough to ensurethat

kinks can travel without the emission of radiation, although it
does seem to reduce the radiation drastically.

• There are some isolated velocities in Speight’s and Kevrekidis’
models at which kinks can travel without losing energy to
radiation.

• Problematic to consider beyond-all-orders expansion in powers
of c2.
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