Traveling waves in nonlinear lattices

 Dmitry Pelinovsky (McMaster University, Canada)References:
D.P., V. Rothos, Physica D 202, 16-36 (2005)
I. Barashenkov, O. Oxtoby, D.P., Physical Review E 72, 035602(R) (2005)
O. Oxtoby, D.P., I. Barashenkov, Nonlinearity 19, 217-235 (2006)
G. looss, D.P., Physica D, published online (2006)
D.P., Nonlinearity, submitted (2006)

Fields Institute, April 28-29, 2006

Discrete ϕ^{4} model

Continuous ϕ^{4} model

$$
u_{t t}=u_{x x}+u\left(1-u^{2}\right), \quad x \in \mathbb{R}, \quad u \in \mathbb{R}
$$

Discrete ϕ^{4} model

Continuous ϕ^{4} model

$$
u_{t t}=u_{x x}+u\left(1-u^{2}\right), \quad x \in \mathbb{R}, \quad u \in \mathbb{R}
$$

admits traveling kink solutions

$$
u(x, t)=\tanh \frac{x-c t-s}{\sqrt{2\left(1-c^{2}\right)}}
$$

where $|c|<1$ and $s \in \mathbb{R}$.

Discrete ϕ^{4} model

Continuous ϕ^{4} model

$$
u_{t t}=u_{x x}+u\left(1-u^{2}\right), \quad x \in \mathbb{R}, \quad u \in \mathbb{R}
$$

admits traveling kink solutions

$$
u(x, t)=\tanh \frac{x-c t-s}{\sqrt{2\left(1-c^{2}\right)}}
$$

where $|c|<1$ and $s \in \mathbb{R}$.
"Standard" (on-site) discretisation:

$$
\ddot{u}_{n}=\frac{u_{n+1}-2 u_{n}+u_{n-1}}{h^{2}}+u_{n}\left(1-u_{n}^{2}\right), \quad n \in \mathbb{Z}
$$

Does the discrete model have traveling kink solutions?

Discrete nonlinear Schrödinger model

Continuous NLS model

$$
i u_{t}=u_{x x}+|u|^{2} u, \quad x \in \mathbb{R}, \quad u \in \mathbb{C}
$$

Discrete nonlinear Schrödinger model

Continuous NLS model

$$
i u_{t}=u_{x x}+|u|^{2} u, \quad x \in \mathbb{R}, \quad u \in \mathbb{C}
$$

admits stationary solitary wave solutions

$$
u(x, t)=\sqrt{\omega} \operatorname{sech}(\sqrt{\omega}(x-2 c t-s)) e^{i c(x-c t)+i \omega t+i \theta}
$$

where $\omega \in \mathbb{R}_{+}$and $(c, s, \theta) \in \mathbb{R}^{3}$.

Discrete nonlinear Schrödinger model

Continuous NLS model

$$
i u_{t}=u_{x x}+|u|^{2} u, \quad x \in \mathbb{R}, \quad u \in \mathbb{C}
$$

admits stationary solitary wave solutions

$$
u(x, t)=\sqrt{\omega} \operatorname{sech}(\sqrt{\omega}(x-2 c t-s)) e^{i c(x-c t)+i \omega t+i \theta}
$$

where $\omega \in \mathbb{R}_{+}$and $(c, s, \theta) \in \mathbb{R}^{3}$.
"Standard" (on-site) discretisation:

$$
i \dot{u}_{n}=\frac{u_{n+1}-2 u_{n}+u_{n-1}}{h^{2}}+\left|u_{n}\right|^{2} u_{n}, \quad n \in \mathbb{Z}
$$

Does the discrete model have stationary solitary wave solutions?

Reductions for traveling waves

Traveling waves

$$
\begin{aligned}
u_{1}(t)= & u_{0}(t-\tau) \\
u_{2}(t)= & u_{1}(t-\tau)=u_{0}(t-2 \tau) \\
& \cdots \\
u_{n+1}(t)= & u_{n}(t-\tau)=\ldots=u_{0}(t-n \tau)
\end{aligned}
$$

Reductions for traveling waves

Traveling waves

$$
\begin{aligned}
u_{1}(t)= & u_{0}(t-\tau) \\
u_{2}(t)= & u_{1}(t-\tau)=u_{0}(t-2 \tau) \\
& \cdots \\
u_{n+1}(t)= & u_{n}(t-\tau)=\ldots=u_{0}(t-n \tau)
\end{aligned}
$$

Traveling solutions

$$
u_{n}(t)=\phi(z), \quad z=h n-c t, \quad c=h / \tau
$$

Reductions for traveling waves

Traveling waves

$$
\begin{aligned}
u_{1}(t)= & u_{0}(t-\tau) \\
u_{2}(t)= & u_{1}(t-\tau)=u_{0}(t-2 \tau) \\
& \cdots \\
u_{n+1}(t)= & u_{n}(t-\tau)=\ldots=u_{0}(t-n \tau)
\end{aligned}
$$

Traveling solutions

$$
u_{n}(t)=\phi(z), \quad z=h n-c t, \quad c=h / \tau
$$

The differential advanced-delay equation

$$
c^{2} \phi^{\prime \prime}=\frac{\phi(z+h)-2 \phi(z)+\phi(z-h)}{h^{2}}+\phi\left(1-\phi^{2}\right)
$$

Obstacles on existence

Classical solutions $\phi(z)$ on $z \in \mathbb{R}$

- $\phi(z)$ is $C^{0}(\mathbb{R})$ if $c=0$
- $\phi(z)$ is $C^{2}(\mathbb{R})$ if $c \neq 0$
- $\phi(z)$ is monotonically increasing from $\phi=-1$ to $\phi=+1$ or $\phi(z)$ is a single-humped solution decaying to $\phi=0$

Obstacles on existence

Classical solutions $\phi(z)$ on $z \in \mathbb{R}$

- $\phi(z)$ is $C^{0}(\mathbb{R})$ if $c=0$
- $\phi(z)$ is $C^{2}(\mathbb{R})$ if $c \neq 0$
- $\phi(z)$ is monotonically increasing from $\phi=-1$ to $\phi=+1$ or $\phi(z)$ is a single-humped solution decaying to $\phi=0$

Stationary solutions ($c=0$) in standard discretizations:

- $\phi(z)$ is piecewise constant on $z \in \mathbb{R}$
- $\phi_{n}=\phi(n h)$ is odd either about $n=0$ or about the midpoint between $n=0$ and $n=1$
- No continuous deformation exists between two particular solutions (Peierls-Nabarro potential)

Example of stationary solutions

Stationary solutions in the standard discrete NLS model

$$
\frac{\phi_{n+1}-2 \phi_{n}+\phi_{n-1}}{h^{2}}+\phi_{n}^{3}-\phi_{n}=0, \quad n \in \mathbb{Z}
$$

General and exceptional discretizations

General discrete ϕ^{4} model:

$$
\ddot{u}_{n}=\frac{u_{n+1}-2 u_{n}+u_{n-1}}{h^{2}}+f\left(u_{n-1}, u_{n}, u_{n+1}\right)
$$

where
P1 (continuity) $f(u, u, u)=u\left(1-u^{2}\right)$
P2 (symmetry) $f(v, u, w)=f(w, u, v)$
P3 $f(v, u, w)$ is independent on h
P4 $f(v, u, w)=u-Q(v, u, w)$, where $Q=O(3)$

General and exceptional discretizations

General discrete ϕ^{4} model:

$$
\ddot{u}_{n}=\frac{u_{n+1}-2 u_{n}+u_{n-1}}{h^{2}}+f\left(u_{n-1}, u_{n}, u_{n+1}\right)
$$

where
P1 (continuity) $f(u, u, u)=u\left(1-u^{2}\right)$
P2 (symmetry) $f(v, u, w)=f(w, u, v)$
P3 $f(v, u, w)$ is independent on h
P4 $f(v, u, w)=u-Q(v, u, w)$, where $Q=O(3)$

Exceptional nonlinearities are those that support continuous stationary solutions with $c=0$ and $\phi \in C^{0}(\mathbb{R})$

Examples of exceptional discretizations

Tovbis (1997) $\quad f=\left(u_{n+1}+u_{n-1}\right)\left(1-u_{n}^{2}\right)$,
Speight (1997)
Kevrekidis (2003)

$$
f=\left(2 u_{n}+u_{n+1}\right)\left(3-u_{n}^{2}-u_{n} u_{n+1}-u_{n+1}^{2}\right)+\{n+1 \rightarrow n\},
$$

$$
f=\left(u_{n+1}+u_{n-1}\right)\left(2-u_{n+1}^{2}-u_{n-1}^{2}\right) .
$$

Examples of exceptional discretizations

Tovbis (1997)

$$
f=\left(u_{n+1}+u_{n-1}\right)\left(1-u_{n}^{2}\right),
$$

Speight (1997)

$$
f=\left(2 u_{n}+u_{n+1}\right)\left(3-u_{n}^{2}-u_{n} u_{n+1}-u_{n+1}^{2}\right)+\{n+1 \rightarrow n\}
$$

Kevrekidis (2003)

$$
f=\left(u_{n+1}+u_{n-1}\right)\left(2-u_{n+1}^{2}-u_{n-1}^{2}\right) .
$$

Exceptional stationary solutions:

- The stationary solution has a translation parameter, e.g.

$$
u_{n}=\tanh (a(h n-s)), \quad a=\frac{1}{h} \arcsin (h / 2)
$$

- Radiation from moving kinks is reduced

Purposes of our work:

- Q: Can we generalize examples of the exceptional nonlinearities into families of exceptional nonlinearities?

Purposes of our work:

- Q: Can we generalize examples of the exceptional nonlinearities into families of exceptional nonlinearities?
- A: YES, two families of $f\left(u_{n-1}, u_{n}, u_{n+1}\right)$ exist, each has two arbitrary parameters.

Purposes of our work:

- Q: Can we generalize examples of the exceptional nonlinearities into families of exceptional nonlinearities?
- A: YES, two families of $f\left(u_{n-1}, u_{n}, u_{n+1}\right)$ exist, each has two arbitrary parameters.
- Q: Does existence of exceptional stationary kinks with $c=0$ imply the existence of moving kinks with $c \neq 0$?

Purposes of our work:

- Q: Can we generalize examples of the exceptional nonlinearities into families of exceptional nonlinearities?
- A: YES, two families of $f\left(u_{n-1}, u_{n}, u_{n+1}\right)$ exist, each has two arbitrary parameters.
- Q: Does existence of exceptional stationary kinks with $c=0$ imply the existence of moving kinks with $c \neq 0$?
- A: NO, kinks with $c \neq 0$ does not bifurcate from the continuous stationary kinks with $c=0$.

Purposes of our work:

- Q: Can we generalize examples of the exceptional nonlinearities into families of exceptional nonlinearities?
- A: YES, two families of $f\left(u_{n-1}, u_{n}, u_{n+1}\right)$ exist, each has two arbitrary parameters.
- Q: Does existence of exceptional stationary kinks with $c=0$ imply the existence of moving kinks with $c \neq 0$?
- A: NO, kinks with $c \neq 0$ does not bifurcate from the continuous stationary kinks with $c=0$.
- Q: Can we characterize all possible bifurcations of steadily moving kinks?

Purposes of our work:

- Q: Can we generalize examples of the exceptional nonlinearities into families of exceptional nonlinearities?
- A: YES, two families of $f\left(u_{n-1}, u_{n}, u_{n+1}\right)$ exist, each has two arbitrary parameters.
- Q: Does existence of exceptional stationary kinks with $c=0$ imply the existence of moving kinks with $c \neq 0$?
- A: NO, kinks with $c \neq 0$ does not bifurcate from the continuous stationary kinks with $c=0$.
- Q: Can we characterize all possible bifurcations of steadily moving kinks?
- A: YES, when the center manifold is finite-dimensional (when $c \neq 0$).

Families of exceptional discretizations

Consider the second-order difference map for stationary solutions

$$
\frac{\phi_{n+1}-2 \phi_{n}+\phi_{n-1}}{h^{2}}+f\left(\phi_{n-1}, \phi_{n}, \phi_{n+1}\right)=0
$$

and reduce the problem to the first-order difference map

$$
E=\frac{\phi_{n+1}-\phi_{n}}{h}-g\left(\phi_{n}, \phi_{n+1}\right)=\mathrm{const}
$$

Such discretizations with polynomial functions $g\left(\phi_{n}, \phi_{n+1}\right)$ exist for exceptional polynomial functions $f\left(\phi_{n-1}, \phi_{n}, \phi_{n+1}\right)$.

Continuous stationary solutions

Theorem[Speight, 1999]: Let $g\left(\phi_{n}, \phi_{n+1}\right)$ be a polynomial such that $g(\phi, \phi)=\frac{1}{2}\left(1-\phi^{2}\right)$. Then, for any $-1<\phi_{0}<1$, there exists a unique monotonic sequence $\left\{\phi_{n}\right\}_{n \in \mathbb{Z}}$ such that

$$
\phi_{n}<\phi_{n+1}, \quad \lim _{n \rightarrow \pm \infty} \phi_{n}= \pm 1
$$

and $\left\{\phi_{n}\right\}_{n \in \mathbb{Z}}$ in continuous in ϕ_{0}.

Continuous stationary solutions

Theorem[Speight, 1999]: Let $g\left(\phi_{n}, \phi_{n+1}\right)$ be a polynomial such that $g(\phi, \phi)=\frac{1}{2}\left(1-\phi^{2}\right)$. Then, for any $-1<\phi_{0}<1$, there exists a unique monotonic sequence $\left\{\phi_{n}\right\}_{n \in \mathbb{Z}}$ such that

$$
\phi_{n}<\phi_{n+1}, \quad \lim _{n \rightarrow \pm \infty} \phi_{n}= \pm 1
$$

and $\left\{\phi_{n}\right\}_{n \in \mathbb{Z}}$ in continuous in ϕ_{0}.
Corollary: There exists a $C^{0}(\mathbb{R})$ monotonic kink solution $\phi(z-s)$ of the advance-delay equation

$$
\frac{\phi(z-h)-2 \phi(z)+\phi(z+h)}{h^{2}}+f(\phi(z-h), \phi(z), \phi(z+h))=0
$$

such that $\lim _{z \rightarrow \pm \infty} \phi(z)= \pm 1$ and $\phi_{0}=\phi(-s)$.

Traveling solutions with $c \neq 0$?

Solutions $\phi(z)=e^{\lambda z}$ of the linearized equation at $\phi=0$:

$$
c^{2} \phi^{\prime \prime}(z)=\frac{\phi(z+h)-2 \phi(z)+\phi(z-h)}{h^{2}}+\phi(z)
$$

Traveling solutions with $c \neq 0$?

Solutions $\phi(z)=e^{\lambda z}$ of the linearized equation at $\phi=0$:

$$
c^{2} \phi^{\prime \prime}(z)=\frac{\phi(z+h)-2 \phi(z)+\phi(z-h)}{h^{2}}+\phi(z)
$$

Dispersion relation for $\Lambda=\lambda h$:

$$
D(\Lambda ; c, h)=2(\cosh \Lambda-1)+h^{2}-c^{2} \Lambda^{2}=0
$$

Traveling solutions with $c \neq 0$?

Solutions $\phi(z)=e^{\lambda z}$ of the linearized equation at $\phi=0$:

$$
c^{2} \phi^{\prime \prime}(z)=\frac{\phi(z+h)-2 \phi(z)+\phi(z-h)}{h^{2}}+\phi(z)
$$

Dispersion relation for $\Lambda=\lambda h$:

$$
D(\Lambda ; c, h)=2(\cosh \Lambda-1)+h^{2}-c^{2} \Lambda^{2}=0
$$

Roots on the imaginary axis $\Lambda=2 i K, K \in \mathbb{R}$

$$
\sin ^{2} K=\frac{h^{2}}{4}+c^{2} K^{2}
$$

Parameter plane (c, h) and bifurcations

Three bifurcations:
$c=0,0<h<2$
$h=0,0<c<1$
$h=h_{*}(c), 0<c<1$

- $c=0,0<h<2$: All roots of K are real and simple.
- $h=0,0<c<1$: Double zero coexists with finitely many pairs of real roots K.
- $h=h_{*}(c), 0<c<1$: One pair of double real (non-zero) roots K exist (1:1 resonant Hopf bifurcation).

Bifurcation at $h=0$

Differential advance-delay equation:

$$
\begin{aligned}
& c^{2} \phi^{\prime \prime}(z)=\frac{\phi(z+h)-2 \phi(z)+\phi(z-h)}{h^{2}}+\phi(z) \\
&-Q(\phi(z-h), \phi(z), \phi(z+h))
\end{aligned}
$$

Formal perturbation expansion:

$$
\phi(z+h)-2 \phi(z)+\phi(z+h)=h^{2} \phi^{\prime \prime}(z)+\sum_{n=2}^{\infty} \frac{2}{(2 n)!} \phi^{(2 n)}(z) h^{2 n}
$$

and

$$
\phi(z)=\sum_{n=0}^{\infty} h^{2 n} \phi_{2 n}(z)
$$

Beyond all order asymptotics

At the leading order $\mathcal{O}\left(h^{0}\right)$:
$\left(1-c^{2}\right) \phi_{0}^{\prime \prime}+\phi_{0}\left(1-\phi_{0}^{2}\right)=0 ; \quad \Rightarrow \quad \phi_{0}(z)=\tanh \theta, \quad \theta=\frac{z}{2 \sqrt{1-c^{2}}}$.

Beyond all order asymptotics

At the leading order $\mathcal{O}\left(h^{0}\right)$:
$\left(1-c^{2}\right) \phi_{0}^{\prime \prime}+\phi_{0}\left(1-\phi_{0}^{2}\right)=0 ; \quad \Rightarrow \quad \phi_{0}(z)=\tanh \theta, \quad \theta=\frac{z}{2 \sqrt{1-c^{2}}}$.

At the higher orders $\mathcal{O}\left(h^{2 n}\right)$:

$$
\mathcal{L} \phi_{2 n}=\text { (odd inhomogeneous terms) }
$$

where $\mathcal{L}=-\frac{d^{2}}{d \theta^{2}}+4-6 \operatorname{sech}^{2} \theta$ with $\mathcal{L} \operatorname{sech}^{2} \theta=0$.

Beyond all order asymptotics

At the leading order $\mathcal{O}\left(h^{0}\right)$:
$\left(1-c^{2}\right) \phi_{0}^{\prime \prime}+\phi_{0}\left(1-\phi_{0}^{2}\right)=0 ; \quad \Rightarrow \quad \phi_{0}(z)=\tanh \theta, \quad \theta=\frac{z}{2 \sqrt{1-c^{2}}}$.

At the higher orders $\mathcal{O}\left(h^{2 n}\right)$:

$$
\mathcal{L} \phi_{2 n}=\text { (odd inhomogeneous terms) }
$$

where $\mathcal{L}=-\frac{d^{2}}{d \theta^{2}}+4-6 \operatorname{sech}^{2} \theta$ with $\mathcal{L} \operatorname{sech}^{2} \theta=0$.
To all orders, the perturbation expansion exists and

$$
\phi(z) \rightarrow \pm 1 \quad \text { as } \quad|z| \rightarrow \infty
$$

Does it exist beyond all orders of the perturbation expansion?

Beyond all order asymptotics

Fourier oscillatory modes:

$$
\phi(z)= \pm 1+\epsilon e^{i k z / h}
$$

has wavenumber k where

$$
\sin ^{2} k=c^{2} k^{2} \text { as } h \rightarrow 0 .
$$

Beyond all order asymptotics

Fourier oscillatory modes:

$$
\phi(z)= \pm 1+\epsilon e^{i k z / h}
$$

has wavenumber k where

$$
\sin ^{2} k=c^{2} k^{2} \text { as } h \rightarrow 0 .
$$

Fourier modes do not occur in power series of h.

Inner equation

Kruskal-Segur (1991): Continue the solution into the complex plane and study Fourier modes near the poles of the regular perturbation expansion

Inner equation

Kruskal-Segur (1991):
Continue the solution into the complex plane and study Fourier modes near the poles of the regular perturbation expansion

Scaling transformation $z=h \zeta+i \pi \sqrt{1-c^{2}}$ and $\phi(z)=\frac{1}{h} \psi(\zeta)$ leads to the inner equation:

$$
\begin{aligned}
c^{2} \psi^{\prime \prime}(\zeta)=\psi(\zeta+1) & -2 \psi(\zeta)+\psi(\zeta-1) \\
& -Q(\psi(\zeta-1), \psi(\zeta), \psi(\zeta+1))+\frac{h^{2}}{2} \psi(\zeta) .
\end{aligned}
$$

Inner asymptotic series

Let the solution $\psi(\zeta)$ be expanded in powers of h^{2} :

$$
\psi(\zeta)=\psi_{0}(\zeta)+\sum_{n=1}^{\infty} h^{2 n} \psi_{2 n}(\zeta) .
$$

Let the leading-order solution $\psi_{0}(\zeta)$ be expanded in inverse power series of ζ :

$$
\psi_{0}(\zeta)=\sum_{n=0}^{\infty} \frac{a_{2 n}}{\zeta^{2 n+1}}, \quad a_{0}=2 \sqrt{1-c^{2}} .
$$

Theorem (Tovbis, 2000): If the inverse power series for $\psi_{0}(\zeta)$ diverges, the formal perturbation expansion for $\phi(z)$ diverges and some Fourier modes are non-zero beyond the formal expansion.

Borel-Laplace transform

Let $\psi_{0}(\zeta)$ be the Laplace transform of $V_{0}(p)$:

$$
\psi_{0}(\zeta)=\int_{\gamma} V_{0}(p) e^{-p \zeta} d p
$$

The resulting integral equation,
numerical coefficients
$\left(4 \sinh ^{2} \frac{p}{2}-c^{2} p^{2}\right) V_{0}(p)=\sum_{\alpha_{1}, \alpha_{2}, \alpha_{3}} a_{\alpha_{1}, \alpha_{2}, \alpha_{3}} e^{\alpha_{1} p} V_{0}(p) * e^{\alpha_{2} p} V_{0}(p) * e^{\alpha_{3} p}$

Power series solution:

$$
V_{0}(p)=\sum_{n=0}^{\infty} v_{2 n} p^{2 n}, \quad v_{0}=2 \sqrt{1-c^{2}}
$$

Singularities of $V_{0}(p)$

Singularities of $V_{0}(p)$

The distance between the stable and unstable manifold:
$\psi_{0 s}(\zeta)-\psi_{0 u}(\zeta)=2 \pi i \sum \operatorname{Res}\left[V_{0}(p) e^{-p \zeta}\right]$

The first pole of $V_{0}(p)$

Let $p=i k_{1}$ be the nearest singularity to $p=0$. Then, $V_{0}(p)$ has the leading order behavior near $p=i k_{1}$:

$$
V_{0}(p) \rightarrow \frac{k_{1}^{2} K_{1}(c)}{\left(p^{2}+k_{1}^{2}\right)},
$$

where $K_{1}(c)$ is referred to as the Stokes constant.

The first pole of $V_{0}(p)$

Let $p=i k_{1}$ be the nearest singularity to $p=0$. Then, $V_{0}(p)$ has the leading order behavior near $p=i k_{1}$:

$$
V_{0}(p) \rightarrow \frac{k_{1}^{2} K_{1}(c)}{\left(p^{2}+k_{1}^{2}\right)},
$$

where $K_{1}(c)$ is referred to as the Stokes constant.
Then

$$
\psi_{0 s}(\zeta)-\psi_{0 u}(\zeta)=\left[\pi k_{1} K_{1}(c)+\mathcal{O}(1 / \zeta)\right] e^{-i k_{1} \zeta}
$$

Residue of the first pole $p=i k_{1}$ can be deduced from a power-series solution for $V_{0}(p)$ at $p=0$, which converges for $|p|<k_{1}$.

Numerical computations of $K_{1}(c)$

- Expand $V_{0}(p)$ near the pole $p \rightarrow \pm i k_{1}$:

$$
V_{0}(p) \rightarrow K_{1}(c) \sum_{n=0}^{\infty}(-1)^{n} k_{1}^{-2 n} p^{2 n}
$$

- Expand $V_{0}(p)$ in the power series at $p=0$:

$$
V_{0}(p)=\sum_{n=0}^{\infty} v_{2 n} p^{2 n}, \quad v_{0}=2 \sqrt{1-c^{2}},
$$

where the coefficients are obtained from a recurrence relation.

- Then $K_{1}(c)$ can be obtained as a numerical limit:

$$
K_{1}(c)=\lim _{n \rightarrow \infty} w_{n}, \quad w_{n}=(-1)^{n} k_{1}^{2 n} v_{2 n}
$$

Convergence of the algorithm

Convergence of w_{n} is slow:

$$
w_{n}=K_{1}(c)+\frac{A(c)}{n}+\mathcal{O}\left(\frac{1}{n^{2}}\right)
$$

The error estimate of the numerical limit:

$$
A_{\text {est }}=-n^{2}\left(w_{n}-w_{n-1}\right)
$$

Stokes Constant

Standard nonlinearity

Stokes Constant

Speight's discretization

Stokes Constant

Stokes Constant

Kevrekidis’ discretization

Bifurcations of traveling kinks on (c, h)

- Zeros $c=c_{*}$ of $K_{1}(c)$ lie in the region $c>0.22$, where only one pair $p= \pm i k_{1}$ is purely imaginary.
- One can expect a bifurcation of the one-parameter curve on the (h, c) plane that passes through the point $\left(0, c_{*}\right)$.
- Numerical analysis of the bifurcation:
- solve the differential advance-delay equation on $z \in[-L, L]$ where $L=100$
- subject to the anti-periodic boundary conditions

$$
\phi(L)=-\phi(-L)
$$

- by using the iterative Newton's method with the continuum kink as starting guess,
- the eight-order finite-difference approximation to the second derivative with the step size $\Delta z=h / 10$.

Numerical analysis of the bifurcation

Speight's model

The average of $\left[\phi(z)-\phi_{\text {ave }}\right]^{2}$ is computed over the the interval $z \in[L-20, L]$ for fixed values of parameter c

Bifurcation at $h=0, c=1$

Differential advance-delay equation (inner form):
$c^{2} \phi^{\prime \prime}=\phi(\zeta+1)-2 \phi(\zeta)+\phi(\zeta-1)+h^{2} \phi-h^{2} Q(\phi(\zeta-1), \phi(\zeta), \phi(\zeta+1))$,
where $\zeta=z / h$.
Near the point
$h=0, c=1$:
$c^{2}=1+\epsilon \gamma$
$h^{2}=\epsilon^{2} \tau$
$\zeta_{1}=\sqrt{\epsilon} \zeta$

Truncated normal form for bifurcation:

$$
\frac{1}{12} \phi^{(\mathrm{iv})}\left(\zeta_{1}\right)-\gamma \phi^{\prime \prime}\left(\zeta_{1}\right)+\tau \phi\left(\zeta_{1}\right)\left(1-\phi^{2}\left(\zeta_{1}\right)\right)=0
$$

Numerical analysis of heteroclinic orbits

Truncated normal form:

$$
\phi^{(\mathrm{iv})}+\sigma \phi^{\prime \prime}+\phi-\phi^{3}=0,
$$

where $\sigma=-\sqrt{12} \gamma / \sqrt{\tau}$ and $\phi=\phi(t)$.

Numerical analysis of heteroclinic orbits

Truncated normal form:

$$
\phi^{(\mathrm{iv})}+\sigma \phi^{\prime \prime}+\phi-\phi^{3}=0,
$$

where $\sigma=-\sqrt{12} \gamma / \sqrt{\tau}$ and $\phi=\phi(t)$.
Linearization at $\phi= \pm 1$ gives pairs of eigenvalues $\left(\lambda_{0},-\lambda_{0}\right)$ and $\left(i \omega_{0},-i \omega_{0}\right)$ with the one-dimensional unstable manifold:

$$
\lim _{t \rightarrow-\infty} \phi_{u}(t)=-1, \quad \lim _{t \rightarrow-\infty}\left(\phi_{u}(t)+1\right) e^{-\lambda_{0} t}=C_{0}
$$

Numerical analysis of heteroclinic orbits

Truncated normal form:

$$
\phi^{(\mathrm{iv})}+\sigma \phi^{\prime \prime}+\phi-\phi^{3}=0,
$$

where $\sigma=-\sqrt{12} \gamma / \sqrt{\tau}$ and $\phi=\phi(t)$.
Linearization at $\phi= \pm 1$ gives pairs of eigenvalues $\left(\lambda_{0},-\lambda_{0}\right)$ and ($i \omega_{0},-i \omega_{0}$) with the one-dimensional unstable manifold:

$$
\lim _{t \rightarrow-\infty} \phi_{u}(t)=-1, \quad \lim _{t \rightarrow-\infty}\left(\phi_{u}(t)+1\right) e^{-\lambda_{0} t}=C_{0}
$$

The kink solution is odd in $t \in \mathbb{R}$ (up to translational invariance). Iterating the initial-value problem along the unstable manifold from $t=0$ to $t=t_{0}$ where $\phi\left(t_{0}\right)=0$, one can compute the split function $K(\sigma)=\phi^{\prime \prime}\left(t_{0}\right)$, which may depend on numerical factors C_{0} and Δt.

Numerical results on $K(\sigma)$

No bifurcations of kinks occur from the point $h=0, c=1$.

Conclusions

- Existence of continuous stationary kinks at $c=0$ is not sufficient for existence of traveling kinks at $c \neq 0$
- Bifurcations of traveling kinks may occur at isolated velocities with $0<c<1$ (e.g. in the numerical analysis of the Speight's and Kevrekidis' exceptional nonlinearities)
- No bifurcations of traveling kinks occur from the point $c=1$
- It is problematic to consider asymptotic expansions in powers of c^{2} and the bifurcation of traveling kinks from the point $c=0$

