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Discrete φ4 model
Continuous φ4 model

utt = uxx + u(1− u2), x ∈ R, u ∈ R

admits traveling kink solutions

u(x, t) = tanh
x− ct− s√

2(1− c2)
,

where |c| < 1 and s ∈ R.
"Standard" (on-site) discretisation:

ün =
un+1 − 2un + un−1

h2
+ un(1− u2

n), n ∈ Z

Does the discrete model have traveling kink solutions?
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Discrete nonlinear Schrödinger model
Continuous NLS model

iut = uxx + |u|2u, x ∈ R, u ∈ C

admits stationary solitary wave solutions

u(x, t) =
√
ω sech(

√
ω(x− 2ct− s)) eic(x−ct)+iωt+iθ,

where ω ∈ R+ and (c, s, θ) ∈ R3.
"Standard" (on-site) discretisation:

iu̇n =
un+1 − 2un + un−1

h2
+ |un|2un, n ∈ Z

Does the discrete model have stationary solitary wave solutions?
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Reductions for traveling waves
Traveling waves

u1(t) = u0(t− τ),

u2(t) = u1(t− τ) = u0(t− 2τ),

...

un+1(t) = un(t− τ) = ... = u0(t− nτ)

Traveling solutions

un(t) = φ(z), z = hn− ct, c = h/τ

The differential advanced-delay equation

c2φ′′ =
φ(z + h)− 2φ(z) + φ(z − h)

h2 + φ(1− φ2)
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Obstacles on existence
Classical solutions φ(z) on z ∈ R
• φ(z) is C0(R) if c = 0

• φ(z) is C2(R) if c 6= 0

• φ(z) is monotonically increasing from φ = −1 to φ = +1 or
φ(z) is a single-humped solution decaying to φ = 0

Stationary solutions (c = 0) in standard discretizations:
• φ(z) is piecewise constant on z ∈ R
• φn = φ(nh) is odd either about n = 0 or about the midpoint

between n = 0 and n = 1

• No continuous deformation exists between two particular
solutions (Peierls–Nabarro potential)

Traveling waves in nonlinear lattices – p. 5/30



Obstacles on existence
Classical solutions φ(z) on z ∈ R
• φ(z) is C0(R) if c = 0

• φ(z) is C2(R) if c 6= 0

• φ(z) is monotonically increasing from φ = −1 to φ = +1 or
φ(z) is a single-humped solution decaying to φ = 0

Stationary solutions (c = 0) in standard discretizations:
• φ(z) is piecewise constant on z ∈ R
• φn = φ(nh) is odd either about n = 0 or about the midpoint

between n = 0 and n = 1

• No continuous deformation exists between two particular
solutions (Peierls–Nabarro potential)

Traveling waves in nonlinear lattices – p. 5/30



Example of stationary solutions
Stationary solutions in the standard discrete NLS model

φn+1 − 2φn + φn−1

h2
+ φ3

n − φn = 0, n ∈ Z
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General and exceptional discretizations
General discrete φ4 model:

ün =
un+1 − 2un + un−1

h2
+ f(un−1, un, un+1)

where
P1 (continuity) f(u, u, u) = u(1− u2)

P2 (symmetry) f(v, u, w) = f(w, u, v)

P3 f(v, u, w) is independent on h
P4 f(v, u, w) = u−Q(v, u, w), where Q = O(3)

Exceptional nonlinearities are those that support continuous
stationary solutions with c = 0 and φ ∈ C0(R)
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Examples of exceptional discretizations

Tovbis (1997) f = (un+1 + un−1)
(
1− u2

n

)
,

Speight (1997) f = (2un + un+1)
(
3− u2

n − unun+1 − u2
n+1

)
+ {n+ 1→ n},

Kevrekidis (2003) f = (un+1 + un−1)
(
2− u2

n+1 − u2
n−1

)
.

Exceptional stationary solutions:

• The stationary solution has a translation parameter, e.g.

un = tanh (a(hn− s)) , a =
1

h
arcsin(h/2)

• Radiation from moving kinks is reduced
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Purposes of our work:
• Q: Can we generalize examples of the exceptional

nonlinearities into families of exceptional nonlinearities?

• A: YES, two families of f(un−1, un, un+1) exist, each has two
arbitrary parameters.

• Q: Does existence of exceptional stationary kinks with c = 0
imply the existence of moving kinks with c 6= 0?

• A: NO, kinks with c 6= 0 does not bifurcate from the
continuous stationary kinks with c = 0.

• Q: Can we characterize all possible bifurcations of steadily
moving kinks?

• A: YES, when the center manifold is finite-dimensional
(when c 6= 0).
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Families of exceptional discretizations
Consider the second-order difference map for stationary solutions

φn+1 − 2φn + φn−1

h2
+ f(φn−1, φn, φn+1) = 0

and reduce the problem to the first-order difference map

E =
φn+1 − φn

h
− g(φn, φn+1) = const

Such discretizations with polynomial functions g(φn, φn+1) exist for
exceptional polynomial functions f(φn−1, φn, φn+1).
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Continuous stationary solutions
Theorem[Speight, 1999]: Let g(φn, φn+1) be a polynomial such that
g(φ, φ) = 1

2
(1− φ2). Then, for any −1 < φ0 < 1, there exists a

unique monotonic sequence {φn}n∈Z such that

φn < φn+1, lim
n→±∞

φn = ±1

and {φn}n∈Z in continuous in φ0.

Corollary: There exists a C0(R) monotonic kink solution φ(z − s)
of the advance-delay equation

φ(z − h)− 2φ(z) + φ(z + h)

h2
+ f(φ(z − h), φ(z), φ(z + h)) = 0,

such that lim
z→±∞

φ(z) = ±1 and φ0 = φ(−s).
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Traveling solutions with c 6= 0?
Solutions φ(z) = eλz of the linearized equation at φ = 0:

c2φ′′(z) =
φ(z + h)− 2φ(z) + φ(z − h)

h2
+ φ(z)

Dispersion relation for Λ = λh:

D(Λ; c, h) = 2 (cosh Λ− 1) + h2 − c2Λ2 = 0

Roots on the imaginary axis Λ = 2iK, K ∈ R

sin2 K =
h2

4
+ c2K2
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Parameter plane (c, h) and bifurcations

0 0.2 0.4 0.6 0.8 1
0
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c

h

h = h*(c) 

h = 0 

Three bifurcations:
c = 0, 0 < h < 2
h = 0, 0 < c < 1
h = h∗(c), 0 < c < 1

• c = 0, 0 < h < 2: All roots of K are real and simple.
• h = 0, 0 < c < 1: Double zero coexists with finitely many

pairs of real roots K.
• h = h∗(c), 0 < c < 1: One pair of double real (non-zero) roots
K exist (1:1 resonant Hopf bifurcation).
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Bifurcation at h = 0

Differential advance-delay equation:

c2φ′′(z) =
φ(z + h)− 2φ(z) + φ(z − h)

h2
+ φ(z)

−Q (φ(z − h), φ(z), φ(z + h))

Formal perturbation expansion:

φ(z + h)− 2φ(z) + φ(z + h) = h2φ′′(z) +
∞∑

n=2

2

(2n)!
φ(2n)(z)h2n

and

φ(z) =
∞∑

n=0

h2nφ2n(z)
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Beyond all order asymptotics
At the leading order O(h0):

(1−c2)φ′′0+φ0(1−φ2
0) = 0; ⇒ φ0(z) = tanh θ, θ =

z

2
√

1− c2
.

At the higher orders O(h2n):

Lφ2n = (odd inhomogeneous terms)

where L = − d2

dθ2 + 4− 6 sech2 θ with Lsech2 θ = 0.

To all orders, the perturbation expansion exists and

φ(z)→ ±1 as |z| → ∞.

Does it exist beyond all orders of the perturbation expansion?
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Beyond all order asymptotics

Fourier oscillatory modes:

φ(z) = ±1 + εeikz/h

has wavenumber k where

sin2 k = c2k2 as h→ 0.

∣∣∣∣
2

k
sin

k

2

∣∣∣∣

k
14π12π10π8π6π4π2π

1

0.8

0.6

0.4

0.2

0

Fourier modes do not occur in power series of h.
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Inner equation

Kruskal–Segur (1991):
Continue the solution into
the complex plane and
study Fourier modes near
the poles of the regular
perturbation expansion

| tanh θ|

Im θ
Re θ

| tanh θ|
20
15
10

5
0

6
4

2
0

-2
-4

-6210-1-2-3

Scaling transformation z = hζ + iπ
√

1− c2 and φ(z) = 1
h
ψ(ζ)

leads to the inner equation:

c2ψ′′(ζ) = ψ(ζ + 1)− 2ψ(ζ) + ψ(ζ − 1)

−Q (ψ(ζ − 1), ψ(ζ), ψ(ζ + 1)) +
h2

2
ψ(ζ).
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Inner asymptotic series
Let the solution ψ(ζ) be expanded in powers of h2:

ψ(ζ) = ψ0(ζ) +
∞∑

n=1

h2nψ2n(ζ).

Let the leading-order solution ψ0(ζ) be expanded in inverse power
series of ζ:

ψ0(ζ) =
∞∑

n=0

a2n

ζ2n+1
, a0 = 2

√
1− c2.

Theorem (Tovbis, 2000): If the inverse power series for ψ0(ζ)
diverges, the formal perturbation expansion for φ(z) diverges and
some Fourier modes are non-zero beyond the formal expansion.
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Borel-Laplace transform
Let ψ0(ζ) be the Laplace transform of V0(p):

ψ0(ζ) =

∫

γ

V0(p)e−pζdp

The resulting integral equation,
(

4 sinh2 p

2
− c2p2

)
V0(p) =

∑

α1,α2,α3

aα1,α2,α3 e
α1pV0(p)∗eα2pV0(p)∗eα3pV0(p).

numerical coefficients

Power series solution:

V0(p) =
∞∑

n=0

v2np
2n, v0 = 2

√
1− c2.
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Singularities of V0(p)

The distance between the stable and
unstable manifold:

ψ0s(ζ)−ψ0u(ζ) = 2πi
∑

Res
[
V0(p)e−pζ

]

Im p
γu γs

Re p

ik1

2ik1

Im p
γu γs

Re p

γ′s

ik1

2ik1

lim
Re(ζ)→+∞

ψ0s(ζ) = 0

lim
Re(ζ)→−∞

ψ0u(ζ) = 0
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The first pole of V0(p)

Let p = ik1 be the nearest singularity to p = 0. Then, V0(p) has the
leading order behavior near p = ik1:

V0(p)→ k2
1K1(c)

(p2 + k2
1)
,

where K1(c) is referred to as the Stokes constant.

Then

ψ0s(ζ)− ψ0u(ζ) = [πk1K1(c) +O(1/ζ)]e−ik1ζ

Residue of the first pole p = ik1 can be deduced from a power-series
solution for V0(p) at p = 0, which converges for |p| < k1.
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solution for V0(p) at p = 0, which converges for |p| < k1.
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Numerical computations of K1(c)

• Expand V0(p) near the pole p→ ±ik1:

V0(p)→ K1(c)
∞∑

n=0

(−1)nk−2n
1 p2n

• Expand V0(p) in the power series at p = 0:

V0(p) =
∞∑

n=0

v2np
2n, v0 = 2

√
1− c2,

where the coefficients are obtained from a recurrence relation.
• Then K1(c) can be obtained as a numerical limit:

K1(c) = lim
n→∞

wn, wn = (−1)nk2n
1 v2n
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Convergence of the algorithm
Convergence of wn is slow:

wn = K1(c) +
A(c)

n
+O

(
1

n2

)

The error estimate of the
numerical limit:

Aest = −n2(wn − wn−1)

Kevrekidis’ model with c = 0.5:

wn − A1est/n
wn

n
10 0008 0006 0004 0002 0000

0.0195

0.0194

0.0193

0.0192

0.0191
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Stokes Constant
Standard nonlinearity

c

K
1
(c

)

10.90.80.70.60.50.40.30.20.10

107
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105

104

103
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10

1
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Stokes Constant
Speight’s discretization

c

K
1
(c

)
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0
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Stokes Constant
Tovbis’ discretization
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1
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Stokes Constant
Kevrekidis’ discretization
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K
1
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0.05

0

−0.05

−0.1
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Bifurcations of traveling kinks on (c, h)

• Zeros c = c∗ of K1(c) lie in the region c > 0.22, where only
one pair p = ±ik1 is purely imaginary.

• One can expect a bifurcation of the one-parameter curve on the
(h, c) plane that passes through the point (0, c∗).

• Numerical analysis of the bifurcation:
• solve the differential advance-delay equation on
z ∈ [−L,L] where L = 100

• subject to the anti-periodic boundary conditions
φ(L) = −φ(−L)

• by using the iterative Newton’s method with the continuum
kink as starting guess,

• the eight-order finite-difference approximation to the
second derivative with the step size ∆z = h/10.
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Numerical analysis of the bifurcation

Speight’s model
×10−10

×10−6

h = 0.8
c∗ = 0.453252694

c− c∗
1050−5−10

2.5

2

1.5

1

0.5

0

The average of [φ(z)− φave]
2 is computed over the the interval

z ∈ [L− 20, L] for fixed values of parameter c
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Bifurcation at h = 0, c = 1

Differential advance-delay equation (inner form):

c2φ′′ = φ(ζ+1)−2φ(ζ)+φ(ζ−1)+h2φ−h2Q(φ(ζ−1), φ(ζ), φ(ζ+1)),

where ζ = z/h.

Near the point
h = 0, c = 1:
c2 = 1 + εγ
h2 = ε2τ
ζ1 =

√
εζ

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

c

h

h = h*(c) 

h = 0 

Truncated normal form for bifurcation:

1

12
φ(iv)(ζ1)− γφ′′(ζ1) + τφ(ζ1)(1− φ2(ζ1)) = 0.

Traveling waves in nonlinear lattices – p. 27/30



Numerical analysis of heteroclinic orbits
Truncated normal form:

φ(iv) + σφ′′ + φ− φ3 = 0,

where σ = −
√

12γ/
√
τ and φ = φ(t).

Linearization at φ = ±1 gives pairs of eigenvalues (λ0,−λ0) and
(iω0,−iω0) with the one-dimensional unstable manifold:

lim
t→−∞

φu(t) = −1, lim
t→−∞

(φu(t) + 1) e−λ0t = C0

The kink solution is odd in t ∈ R (up to translational invariance).
Iterating the initial-value problem along the unstable manifold from
t = 0 to t = t0 where φ(t0) = 0, one can compute the split function
K(σ) = φ′′(t0), which may depend on numerical factors C0 and ∆t.
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Numerical results on K(σ)

0 5 10
0

0.5

1

σ

K(σ)

0 5 10 15
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

σ

Er
ro

r

0 1 2 3 4 5 6
x 10−3

0.0033260

0.0033264

0.0033268

dt

K

10−12 10−10 10−8 10−6 10−4

3.3259

3.3260

3.3261

c0

K

dt = 0.01 

dt = 0.005

No bifurcations of kinks occur from the point h = 0, c = 1.
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Conclusions

• Existence of continuous stationary kinks at c = 0 is not
sufficient for existence of traveling kinks at c 6= 0

• Bifurcations of traveling kinks may occur at isolated velocities
with 0 < c < 1 (e.g. in the numerical analysis of the Speight’s
and Kevrekidis’ exceptional nonlinearities)

• No bifurcations of traveling kinks occur from the point c = 1

• It is problematic to consider asymptotic expansions in powers
of c2 and the bifurcation of traveling kinks from the point c = 0
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