Multi-component vortices in coupled NLS equations

Dmitry Pelinovsky (McMaster University, Canada)

Joint work with Anton Desyatnikov (Australian National University) and Jianke Yang (University of Vermont)

Reference: Fundamentalnaya i prikladnaya matematika 12, 35-63 (2006)

Conference "Symmetries in equations of mathematical physics Kiev, June 25-28, 2007

Scalar vortices

Focusing two-dimensional NLS equation

$$
i u_{t}+u_{x x}+u_{y y}+f\left(|u|^{2}\right) u=0
$$

where $f(s)$ is $C^{1}\left(\mathbb{R}_{+}\right)$and $f^{\prime}(s)>0$ on $s \in \mathbb{R}_{+}$.
Definition: Vortices are stationary solutions of the form

$$
u=R(r) e^{i m \theta} e^{i \omega t}
$$

where (r, θ) are polar coordinates on $\mathbb{R}^{2}, m \in \mathbb{N}$ is the vortex charge and $R(r)$ is a solution of the second-order ODE:

$$
R^{\prime \prime}+\frac{1}{r} R^{\prime}-\frac{m^{2}}{r^{2}} R-\omega R+f\left(R^{2}\right) R=0
$$

such that $R(r) \rightarrow r^{|m|}$ as $r \rightarrow 0$ and $R(r) \rightarrow e^{-\sqrt{\omega} r} / \sqrt{r}$ as $r \rightarrow \infty$.

Examples

Saturable medium with $f(s)=s /(1+s)$

Cubic-quintic approximation $f(s)=s-s^{2}$
Desyatnikov, Kivshar, and Torner, Optical Vortices and Vortex Solitons, In: Progress in Optics 47, Ed. E. Wolf (2005)

Typical instabilities

Vortices with charges $m=1$ and $m=2$ are unstable in the cubic NLS model:

Skryabin and Firth, Phys. Rev. E 58, 3916 (1998)

Coupled NLS equations

We consider the system of n coupled NLS equations

$$
i \dot{\psi}_{k}+\Delta \psi_{k}=W^{\prime}(E) \psi_{k}, \quad k=1,2, \ldots, n
$$

where $\psi_{k}: \mathbb{R}^{2} \times \mathbb{R} \mapsto \mathbb{C}$ and $W: \mathbb{R}_{+} \mapsto \mathbb{R}_{+}$is C^{2}-function of $E=\sum_{k=1}^{n}\left|\psi_{k}\right|^{2}$. The system is Hamiltonian with

$$
H=\int_{\mathbb{R}^{2}}\left[\sum_{k=1}^{n}\left(\left|\partial_{x} \psi_{k}\right|^{2}+\left|\partial_{y} \psi_{k}\right|^{2}\right)+W\left(\sum_{k=1}^{n}\left|\psi_{k}\right|^{2}\right)\right] d x d y
$$

Vector momentum, angular momentum, and the charges

$$
Q_{k}=\int_{\mathbb{R}^{2}}\left|\psi_{k}\right|^{2} d x d y, \quad k=1, \ldots, n
$$

are basic conserved quantities of the system.

Symplectic symmetries

The Hamiltonian function is invariant with respect to N-parameter group of rotations in the space $\mathbb{R}^{2 n}$ or $\mathbb{C}^{n} \times \overline{\mathbb{C}}^{n}$, where

$$
N=\binom{2 n}{2}=\frac{(2 n)!}{2!(2 n-2)!}=n(2 n-1)
$$

Let G be a linear transformation in $x \in \mathbb{R}^{2 n}$ and J be the symplectic matrix such that $\dot{x}=J \operatorname{grad}(H(x))$. Then, the Hamiltonian system is invariant under the linear transformation if and only if

$$
J=G J G^{T}
$$

Such transformations G are called symplectic transformations. If $G=I+g$, then $g J+J g^{T}=0$.

Symmetries of the coupled NLS

The group of symplectic rotations in $\mathbb{R}^{2 n}$ is generated by the n^{2}-parameter matrix

$$
g=\left(\begin{array}{cc}
A & B \\
-B^{T} & A
\end{array}\right)
$$

where $A^{T}=-A$ and $B^{T}=B$. Equivalently, the group of symplectic rotations in \mathbb{C}^{n} is generated by $g=A-i B$.
Additional conserved quantities related to the symmetries:

$$
Q_{k, m}=\int_{\mathbb{R}^{2}} \psi_{k} \bar{\psi}_{m} d x d y, \quad k=1, \ldots, n, \quad m=k, \ldots, n,
$$

where n quantities are real-valued charges $Q_{k}=Q_{k, k}$ and $n(n-1) / 2$ quantities $Q_{k, m}$ with $m \neq k$ are complex-valued.

Example $n=2$

Symplectic rotations in \mathbb{C}^{2}

$$
\begin{array}{r}
G_{1}=\left(\begin{array}{cc}
e^{i \theta_{1}} & 0 \\
0 & 1
\end{array}\right), \quad G_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta_{2}}
\end{array}\right) \\
G_{3}=\left(\begin{array}{cc}
\cos \theta_{3} & \sin \theta_{3} \\
-\sin \theta_{3} & \cos \theta_{3}
\end{array}\right), \quad G_{4}=\left(\begin{array}{cc}
\cos \theta_{4} & i \sin \theta_{4} \\
i \sin \theta_{4} & \cos \theta_{4}
\end{array}\right),
\end{array}
$$

where $\theta_{1,2,3,4}$ are defined on $[0,2 \pi]$. If $\left(\psi_{1}, \psi_{2}\right)$ is a solution of the coupled NLS equations, then a new solution $\left(\tilde{\psi}_{1}, \tilde{\psi}_{2}\right)$ is

$$
\begin{gathered}
\tilde{\psi}_{1}=\alpha_{1} e^{i \theta_{1}} \psi_{1}+\alpha_{2} e^{i \theta_{2}} \psi_{2} \\
\tilde{\psi}_{2}=-\bar{\alpha}_{2} e^{i \theta_{1}} \psi_{1}+\bar{\alpha}_{1} e^{i \theta_{2}} \psi_{2}
\end{gathered}
$$

where $\left(\alpha_{1}, \alpha_{2}\right)$ are complex-valued parameters and $\left(\theta_{1}, \theta_{2}\right)$ are real-valued parameters.

Stationary solutions : classification

Consider the stationary solution in the form:

$$
\psi_{k}=\varphi_{k}(x) e^{i \omega_{k} t}, \quad k=1, \ldots, n
$$

where ω_{k} is real-valued parameter and $\varphi_{k}(x)$ solves

$$
\Delta \varphi_{k}-\omega_{k} \varphi_{k}=W^{\prime}(E) \varphi_{k}
$$

First Alternative:
For any $k \neq m$, either (I) $\omega_{k}=\omega_{m}$ or (II) $\left(\varphi_{k}, \varphi_{m}\right)=0$.
Class I contains a variety of super-symmetric vortex congifurations. Class II contains a variety of coupled states between solitons and vortices of different frequencies.

Vortex solutions of class I

Separating the polar coordinates (r, θ) in \mathbb{R}^{2} :

$$
\varphi_{k}=\phi_{k}(\theta) R_{k}(r), \quad k=1, \ldots, n,
$$

we obtain two ODEs:
$\phi_{k}^{\prime \prime}+m_{k}^{2} \phi_{k}=0, \quad R_{k}^{\prime \prime}+\frac{1}{r} R_{k}^{\prime}-\frac{m_{k}^{2}}{r^{2}} R_{k}=\left(W^{\prime}\left(E_{0}\right)+\omega\right) R_{k}$,
where $E_{0}(r)=\sum_{k=1}^{n} R_{k}^{2}(r)\left|\phi_{k}(\theta)\right|^{2}$. By the periodicity of $\phi_{k}(\theta)$, parameter m_{k} is integer (vortex charge).

Second Alternative:

For any $k \neq m$, either (i) $m_{k}^{2}=m_{m}^{2}, R_{k}=R_{m}$ or (ii) $\int_{0}^{\infty} R_{k}(r) R_{m}(r) d r / r=0, \phi_{k}(\theta)=e^{ \pm i m_{k} \theta}$.

Vortex solutions of sub-class I (i)

Let $m_{k}^{2}=m^{2}$ and $R_{k}=R(r) \forall k$, where

$$
R^{\prime \prime}+\frac{1}{r} R^{\prime}-\frac{m^{2}}{r^{2}} R=\left(W^{\prime}\left(R^{2}\right)+\omega\right) R
$$

Then,

$$
\phi_{k}=a_{k} e^{i m \theta}+b_{k} e^{-i m \theta}, \quad k=1, \ldots, n
$$

subject to the solvability constraint $\sum_{k=1}^{n}\left|\phi_{k}\right|^{2}=1$, which is equivalent to the normalization in \mathbb{C}^{n} :

$$
\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}=1, \quad(\mathbf{a}, \mathbf{b})=0
$$

where $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{T}$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)^{T}$ are in \mathbb{C}^{n}.

Examples for $n=2$

- If $\mathrm{b}=0$, then the solution is vortex pair of double charge:

$$
\varphi_{1}=a_{1} R(r) e^{i m \theta}, \quad \varphi_{2}=a_{2} R(r) e^{i m \theta}
$$

which is equivalent to the scalar vortex $\mathbf{a}=(1,0)^{T}$ by symplectic rotations

- If $\mathbf{a}=\frac{1}{\sqrt{2}}(1,0)^{T}$ and $\mathbf{b}=\frac{1}{\sqrt{2}}(0,1)^{T}$, then the solution is vortex pair of hidden charge:

$$
\varphi_{1}=\frac{1}{\sqrt{2}} R(r) e^{i m \theta}, \quad \varphi_{2}=\frac{1}{\sqrt{2}} R(r) e^{-i m \theta}
$$

which generates a family with $\mathrm{a}, \mathrm{b} \neq 0$ by symplectic rotations

Examples for $n=2$

Cubic model (Manakov model)

Cubic-quntic model

Vortex solutions of sub-class I (ii)

Let $\phi_{k}(\theta)=e^{ \pm i m_{k} \theta}$ with m_{k}^{2} being distinct for all k. There exists an invariant manifold $R_{k}(r) \equiv 0$ for any k.

A hierarchy of vortex states:

- Scalar vortex

$$
\varphi_{1}=R(r) e^{i m \theta}, \quad \varphi_{k}=0, k=2, \ldots, n
$$

- Two-charge vortex

$$
\varphi_{1}=\alpha_{1} R_{1}(r) e^{i m_{1} \theta}, \quad \varphi_{2}=\alpha_{2} R_{2}(r) e^{i m_{2} \theta}, \quad \varphi_{k}=0, k=3, \ldots n
$$

where $R_{1,2}(r)$ solve $L_{m_{1}} R_{1}=0$ and $L_{m_{2}} R_{2}=0$ with

$$
L_{m}=\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}-\frac{m^{2}}{r^{2}}-\omega+W^{\prime}\left(R_{1}^{2}+R_{2}^{2}\right)
$$

Examples for $n=2$

Cubic (Manakov) system

(a) $\left(m_{1}, m_{2}\right)=(0,1)$, (b) $\left(m_{1}, m_{2}\right)=(0,2)$, (c) $\left(m_{1}, m_{2}\right)=(1,2)$.

Conjecture from the numerical observations:

$$
\left|m_{1}\right|+n_{1}=\left|m_{2}\right|+n_{2},
$$

where n_{k} is the number of nodes of $R_{k}(r)$ on $r>0$.

Symmetries and linearization

Stability problem for perturbation vector $(\mathbf{u}, \mathbf{w}) \in \mathbb{C}^{2 n}$ is

$$
\mathcal{H}\binom{\mathbf{u}}{\mathbf{v}}=i \lambda\left(\begin{array}{cc}
I & O \\
O & -I
\end{array}\right)\binom{\mathbf{u}}{\mathbf{v}}
$$

where

$$
\mathcal{H}=\left(-\Delta+W^{\prime}(E)\right)\left(\begin{array}{cc}
I & O \\
O & I
\end{array}\right)+W^{\prime \prime}(E)\binom{\varphi}{\bar{\varphi}} \cdot\left(\begin{array}{ll}
\bar{\varphi}^{T} & \varphi^{T}
\end{array}\right)
$$

and $E(x)=\sum_{k=1}^{n}\left|\varphi_{k}(x)\right|^{2}$.
Remark: The last term in \mathcal{H} is the outer product, which is a rank-one matrix for any $x \in \mathbb{R}^{2}$. This can be used for block-diagonalization and simplification of the stability problem.

Example: vortices of sub-class I(ii)

For instance, consider a scalar vortex:

$$
\varphi_{k}(x)=a_{k} R(r) e^{i m \theta}, \quad a_{k} \in \mathbb{C}: \quad \sum_{k=1}^{n}\left|a_{k}\right|^{2}=1
$$

An ortho-normal basis in $\mathbb{C}^{n}: S_{1}=\left\{\mathbf{a}, \mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n-1}\right\}$, where $\left\{\mathbf{c}_{j}\right\}_{j=1}^{n-1}$ spans the orthogonal compliment of a. The decomposition

$$
\mathbf{u}(x)=\alpha^{+}(x) \mathbf{a}+\sum_{j=1}^{n-1} \gamma_{j}^{+}(x) \mathbf{c}_{j}, \quad \mathbf{v}(x)=\alpha^{-}(x) \overline{\mathbf{a}}+\sum_{j=1}^{n-1} \gamma_{j}^{-}(x) \overline{\mathbf{c}}_{j}
$$

block-diagonalizes \mathcal{H} into 2-by-2 coupled non-self-adjoint problem for (α^{+}, α^{-}) and pairs of uncoupled self-adjoint problems for $\left\{\gamma_{j}^{+}, \gamma_{j}^{-}\right\}_{j=1}^{n-1}$.

Example: vortices of sub-class I(i)

For instance, consider a vortex pair with hidden charge

$$
\varphi_{k}(x)=\left(a_{k} e^{i m \theta}+b_{k} e^{-i m \theta}\right) R(r), \quad a_{k}, b_{k} \in \mathbb{C},
$$

such that

$$
(\mathbf{a}, \mathbf{b})=0, \quad\|\mathbf{a}\|^{2}=\frac{1+\mu}{2}, \quad\|\mathbf{b}\|^{2}=\frac{1-\mu}{2}
$$

A similar decomposition over an ortho-normal basis $S_{2}=\left\{\mathbf{a}, \mathbf{b}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{n-2}\right\} \subset \mathbb{C}^{n}$ block-diagonalizes \mathcal{H} into 4-by-4 coupled non-self-adjoint problem and pairs of uncoupled self-adjoint problems.

Example: instabilities of vortex pairs

(a) $\mu= \pm 1$ - vortex of double charge
(b) $\mu=0$ - vortex of hidden charge

Conclusion

- Analysis of symplectic rotations and conserved quantities
- Classification and simplification of exact vortex solutions and their linearizations in the system of coupled NLS equations
- An algorithm for analysis of a particular family of solutions

1. Construct the seed vortex for a given vortex solution
2. Study analytically and numerically the associated linearization problem for the seed vortex
3. Rotate the seed vortex and the eigenvectors of the linearized problem with the same group of symplectic rotations to obtain relevant results for the given vortex.

- Nonlinear dynamics of solutions along the family of symplectic rotations is not yet well understood.

