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Background

Gross-Pitaevskii equation

Density waves in cigar–shaped Bose–Einstein condensates with repulsive

inter-atomic interactions placed in a magnetic trap are modeled by the

Gross-Pitaevskii equation with the harmonic potential

ivτ = −1

2
∇2

ξv +
1

2
|ξ|2v + |v |2v − µv ,

where µ is the chemical potential, ξ ∈ R
d , and ∇2

ξ is the Laplacian in ξ.

Using the scaling transformation,

v(ξ, t) = µ1/2u(x , t), ξ = (2µ)1/2x , τ = 2t ,

the Gross–Pitaevskii equation is transformed to the semi-classical form

i ε ut + ε2 ∇2
xu + (1 − |x |2 − |u|2)u = 0,

where ε = (2µ)−1 is a small parameter.
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Background

Ground (vortex-free) state

Limit µ→ ∞ or ε→ 0 is referred to as the semi-classical or Thomas–Fermi

limit. Physically, it is the limit of large density of the atomic cloud.

The ground state ηε is the real positive solution of the stationary equation,

ε2 ∇2
xηε + (1 − |x |2 − η2

ε)ηε = 0, x ∈ R
2.

For small ε > 0, the ground state ηε ∈ C∞(R2) decays to zero as |x | → ∞
faster than any exponential function

0 < ηε(x) ≤ C ε1/3 exp

(

1 − |x |2
4 ε2/3

)

, for all |x | ≥ 1.

The Thomas–Fermi approximation

η0(x) := lim
ε→0

ηε(x) =

{

(1 − |x |2)1/2, for |x | < 1,
0, for |x | > 1,

was justified by Ignat–Milot (2006); Gallo–Pelinovsky (2011).
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Background

Vortex states

The static vortex uε is a complex-valued solution of the stationary equation,

ε2 ∇2
xuε + (1 − |x |2 − |uε|2)uε = 0, x ∈ R

2.

The product representation

u(x , t) = ηε(x)v(x , t)

brings the Gross–Pitaevskii equation to the equivalent form

i ε η2
εvt + ε2 ∇x

(

η2
ε∇xv

)

+ η4
ε(1 − |v |2)v = 0,

where lim|x|→∞ |v(x)| = 1.

Symmetric vortex of charge m ∈ N corresponds to the choice v = ψ(r/ ε)eimθ,

where (r , θ) are polar coordinates on R
2 and ψ(r/ ε) → 1 as r → ∞.
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Review of results

Experimental studies of vortices

Absorption images of a BEC stirred with a laser beam.

From Madison et al., 2000.
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Review of results

Experimental studies of vortex precession

Vortex precession in a trapped two-component BEC.

From Anderson et al., 2000.
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Review of results

Theoretical studies of vortices

Castin & Dum (1999) - rotating vortices can become local minimizers of

energy for larger frequencies

Fetter & Svidzinsky (2001), Möttönnen et al. (2005) - computations of

effective energy for vortex configurations

Aftalion & Du (2001), Ignat & Millot (2006) - variational proofs that a

vortex of charge one is a global minimizer for larger frequencies

Pelinovsky & Kevrekidis (2011) - variational approximations of

eigenvalues for single vortices, dipoles and quadrupoles

Middlecamp et al. (2010), Kollar & Pego (2012) - numerical computations

of eigenvalues for vortices, dipoles, and quadrupoles
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Variational approximations

Spectral stability of charge-one vortices
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Left: ground state ηε. Right: charge-one vortex.
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Variational approximations

Spectral stability of dipole configurations
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Variational approximations

Variational approximations of eigenvalues

The equivalent Gross–Pitaevskii equation

i ε η2
εvt + ε2 ∇x

(

η2
ε∇xv

)

+ η4
ε(1 − |v |2)v = 0,

is the Euler–Lagrange equation for the Lagrangian L(v) = K (v) + Λ(v)
with the kinetic energy

K (v) =
i

2
ε

∫

R2

η2
ε(vv̄t − v̄vt)dx

and the potential energy

Λ(v) = ε2

∫

R2

η2
ε |∇xv |2dx +

1

2

∫

R2

η4
ε(1 − |v |2)2dx .

Substituting a vortex ansatz for v = ψ(r/ ε)eimθ and computing

Euler–Lagrange equations for parameters of the ansatz yield the system of

equations that captures qualitative dynamics of a single vortex placed in a

harmonic potential.
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Variational approximations

Free vortex of the defocusing NLS equation

If ηε ≡ 1, a single vortex of charge m of the defocusing NLS equation is given

by

Vm(x) = Ψm(R)eimθ, R =
r

ε
, m ∈ N,

where Ψm is a solution of the differential equation

Ψ′′
m + R−1Ψ′

m − m2R−2Ψm + (1 −Ψ2
m)Ψm = 0, R > 0,

such that Ψm(0) = 0, Ψm(R) > 0 for all R > 0, and limR→∞ Ψm(R) = 1.

The short-range asymptotics is

Ψm(R) = αmRm +O(Rm+2) as R → 0.

The long-range asymptotics is

Ψ2
m(R) = 1 − m2

R2
+O

(

1

R4

)

as R → ∞.
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Variational approximations

Kinetic energy

We can use variables

x = x0 + εX , y = y0 + εY ,

and write the kinetic energy as

K (Vm) = −ẋ0Kx(Vm)− ẏ0Ky (Vm),

where

Kx(Vm) = −m ε2

∫

R2

η2
ε(x)

YΨ2
m

R2
dXdY , Ky (Vm) = m ε2

∫

R2

η2
ε(x)

XΨ2
m

R2
dXdY .

Lemma (D.P. & P.Kevrekidis (2011))

For small ε > 0 and small (x0, y0) ∈ R
2, the kinetic energy of a single vortex is

represented by

K (Vm) = πm ε(x0ẏ0 − y0ẋ0)
[

1 +O(ε) +O(x2
0 + y2

0 )
]

.
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Variational approximations

Potential energy

We write the potential energy as

Λ(Vm) = ε2

∫

R2

η2
ε(x)

[

(

dΨm

dR

)2

+
m2

R2
Ψ2

m

]

dXdY +
ε2

2

∫

R2

η4
ε(x)(1 −Ψ2

m)
2dXdY .

Lemma (D.P. & P.Kevrekidis (2011))

For small ε > 0 and small (x0, y0) ∈ R
2, the potential energy of a single vortex

is represented by

Λ(Vm)− Λ(Vm)|x0=y0=0 = −π εmωm(x
2
0 + y2

0 )
[

1 +O(ε1/3) +O(x2
0 + y2

0 )
]

,

where ωm is given by

ωm = εm

[

2| log(ε)|+ 1 +
2

m2

∫ ∞

0

[

(

dΨm

dR

)2

+
m2

R2

(

Ψ2
m − R2

1 + R2

)

]

RdR

]

.
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Variational approximations

Eigenfrequencies of the charge-one vortex

Euler–Lagrange equations for the leading part of L(Vm) = K (Vm) +Λ(Vm) give

−ẋ0 = ωmy0, ẏ0 = ωmx0,

where ωm = 2 εm| log(ε)|+O(ε). The frequency of vortex precession can be

compared with the numerical results plotted here for µ = (2 ε)−1 and ω = 2λ.
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Bifurcation theory

From variational approximations to bifurcation theory

A vortex of charge one has frequency ω1(ε),

ω1(ε) = 2 ε | log(ε)|+O(ε),

which corresponds to its periodic precession around the origin (0,0) ∈ R
2 with

an infinitesimal displacement from the origin.

Consider again the Gross–Pitaevskii equation in the semi-classical form

i ε ut + ε2 ∇2
xu + (1 − |x |2 − |u|2)u = 0.

The static vortex uε is a symmetric vortex located at the origin.

Q: Can we find a steadily rotating vortex displaced from the origin at a small

but finite distance?

Q: If we can, is this steadily rotating vortex more stable or less stable than the

symmetric vortex located at the origin?
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Bifurcation theory

Main results I

Theorem (D.P. & P.Kevrekidis (2013))

For every ǫ ∈
(

0, 1
4

)

, there exists a unique classical solution u = ψǫ(r)e
iθ for

the symmetric vortex of charge one.

For small |ǫ− 1
4
|, the symmetric vortex is spectrally stable in the sense that all

eigenvalues of the spectral stability problem are purely imaginary and

semi-simple, except for the double zero eigenvalue.

The symmetric vortex is a saddle point of the Gross–Pitaevskii energy

E(u) =

∫

R2

(

ε2 |∇u|2 + (|x |2 − 1)|u|2 + 1

2
|u|4

)

dx

with exactly two eigen-directions for energy decrease (corresponding to

eigen-modes of the spectral stability problem with negative Krein signature).
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Bifurcation theory

Main results II

Theorem (D.P. & P.Kevrekidis (2013))

For every ǫ ∈
(

0, 1
2

)

with small |ǫ− 1
2
|, there is a rotational frequency

ω0 ∈ (0,2) such that for every ω > ω0 with small |ω − ω0|, in addition to the

symmetric vortex u = ψε(r)e
iθ, there exists an asymmetric vortex solution

u = uε(x ;α) of the Gross–Pitaevskii equation with a rotational term.

The center of the asymmetric vortex solution is placed on the circle of radius

|a| centered at the origin (0,0) ∈ R
2 at an arbitrary angle α. There is C > 0

such that

|a| ≤ C
√

ǫ(ω − ω0).

For ω > ω0, the symmetric vortex is a local minimizer of the energy E(u),
whereas the asymmetric vortex is a saddle point of the energy E(u) with

exactly one eigen-direction for energy decrease.
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Bifurcation theory

Steady precession of asymmetric charge-one vortices
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Spatial contour plots of the amplitude (left) and phase (right) of a rotating

charge-one vortex.
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Bifurcation theory

Main results III

The energy space of the Gross–Pitaevskii equation

X =
{

u ∈ H1(R2) : |x |u ∈ L2(R2)
}

.

Theorem (D.P. & P.Kevrekidis (2013))

For every ǫ ∈
(

0, 1
2

)

and ω > ω0 with small |ǫ− 1
2
| and |ω − ω0|, the symmetric

vortex of charge one is orbitally stable in the following sense: for any σ > 0

there is a δ > 0, such that if ‖u(x ,0)− ψε(r)e
iθ‖X ≤ δ, then

inf
β∈R

‖u(x , t)− eiβψε(r)e
iθ‖X ≤ σ, t ∈ R+,

At the same time, the asymmetric vortex is also orbitally stable in the following

sense: for any σ > 0 there is a δ > 0, such that if ‖u(x ,0)− uε(x ,0)‖X ≤ δ,
then

inf
(α,β)∈R2

‖u(x , t)− eiβuε(x ;α)‖X ≤ σ, t ∈ R+.
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Bifurcation theory

Spectral stability of rotating charge-one vortices
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Left: eigenvalues of the spectral stability problem for the symmetric vortex.
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Small bound state limit

Steadily rotating vortices

In the rotating coordinate frame,

[

x

y

]

=

[

cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

] [

ξ
η

]

, ω ∈ R,

the Gross–Pitaevskii equation takes the form,

i εut + ε2(uξξ + uηη) + (1 − ξ2 − η2 − |u|2)u − i ε ω(ξuη − ηuξ) = 0.

The symmetric vortex of charge one is given by

u(ξ, η)√
1 + ε ω

= ψν(r)e
iθ,

√

ξ2 + η2

√
1 + ε ω

= r ,

where ψν satisfies the differential equation

ν2

(

d2ψν

dr2
+

1

r

dψν

dr
− ψν

r2

)

+ (1 − r2 − ψ2
ν)ψν = 0, ν =

ε

1 + ε ω
.
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Small bound state limit

Existence of symmetric vortex

Consider the Schrödinger operator for the quantum harmonic oscillator

H(ν) := −ν2(∂2
x + ∂2

y ) + x2 + y2 − 1.

The spectrum of H(ν) in L2(R2) is purely discrete:

σ(H(ν)) =
{

λn,m(ν) = −1 + 2ν(n + m + 1), (n,m) ∈ N
2
0

}

,

ν = 1
2

- bifurcation of a ground state ην(r) (n = m = 0).

ν = 1
4

- bifurcation of a charge-one vortex ψν(r)e
iθ (n + m = 1).

Lemma

Let µ := 1
16

− ν2 > 0 and ψ0(r) = re−2r2

. Then,

sup
r∈R+

∣

∣

∣
ψν(r)− µ1/2ψ0(r)

∣

∣

∣
≤ Cµ3/2.

D.Pelinovsky (McMaster University) Asymmetric vortices in a symmetric potential 22 / 33



Small bound state limit

Energy of the symmetric vortex

Substituting

u(x , y) = ψν(r)e
iθ + U(x , y)

to the energy functional E(u), we obtain

E(u)− E(ψνeiθ) = 〈U,H(ν)U〉L2 +O(‖U‖3
H1), (1)

where U = [U, Ū]T . Using the decomposition in normal modes,

U(x , y) =
∑

m∈Z

Vm(r)e
imθ, Ū(x , y) =

∑

m∈Z

Wm(r)e
imθ,

we obtain an uncoupled eigenvalue problem for components (Vm,Wm−2):

Hm(ν)

[

Vm

Wm−2

]

= νλ

[

Vm

Wm−2

]

, m ∈ Z,

where

Hm(ν) =

[

−ν2∆m + r2 − 1 + 2ψ2
ν ψ2

ν

ψ2
ν −ν2∆m−2 + r2 − 1 + 2ψ2

ν

]

.
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Small bound state limit

Symmetric vortex as a saddle point of energy

Recall

Hm(ν) =

[

−ν2∆m + r2 − 1 + 2ψ2
ν ψ2

ν

ψ2
ν −ν2∆m−2 + r2 − 1 + 2ψ2

ν

]

.

and

σ(−ν2∆m + r2 − 1) = {λn,m(ν) = −1 + 2ν(n + m + 1), n ∈ N0} .

Lemma

For ν < 1
4

with small |ν − 1
4
|, there exists exactly one negative eigenvalue

λ0(ν), which has algebraic multiplicity two and is associated to the

eigenvectors of H2(ν) and H0(ν). Moreover, λ0 is a C1 function of ν satisfying

lim
ν↑ 1

4

λ0(ν) = −2.

The zero eigenvalue of H1(ν) is simple and is associated with the gauge

symmetry. All other eigenvalues of Hm(ν) are strictly positive.
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Small bound state limit

Spectral stability of symmetric vortex

Non-self-adjoint spectral problem:

Hm(ν)

[

Vm

Wm−2

]

= νλ

[

1 0

0 −1

] [

Vm

Wm−2

]

, m ∈ Z.

Lemma

For ν < 1
4

with small |ν − 1
4
|, the spectral problem admits only real eigenvalues

λ of equal algebraic and geometric multiplicities, in addition to the double zero

eigenvalue for m = 1.

The smallest nonzero eigenvalues are λ = +ω0(ν) for m = 2 and λ = −ω0(ν)
for m = 0, where ω0(ν) > 0 and limν↑ 1

4
ω0(ν) = 2. These eigenvalues are

simple and correspond to the eigenvectors V±(ν) such that

〈V+(ν),H2(ν)V+(ν)〉L2
r
= 〈V−(ν),H0(ν)V−(ν)〉L2

r
< 0.

The quadratic form associated with operators Hm(ν) is strictly positive for the

eigenvectors corresponding to any other eigenvalue of the spectral problems.
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Small bound state limit

Two linearizations in the case of rotation

If we substitute u(ξ, η, t) = ψν(r)e
iθ + U(ξ, η, t) to the Gross–Pitaevskii

equation with the rotation and adopt the decomposition

U(ξ, η, t) =
∑

m∈Z

V (m)(ρ)eimθe−iσt , Ū(ξ, η, t) =
∑

m∈Z

W (m)(ρ)eimθe−iσt ,

we obtain the spectral stability problem

H(m)
ω

[

V (m)

W (m−2)

]

= ε σ

[

1 0

0 −1

] [

V (m)

W (m−2)

]

,

where

H(m)
ω =

[

1 − ρ2 + ε2 ∆m + ε ωm − 2ψ2 −ψ2

−ψ2 1 − ρ2 + ε2 ∆m−2 − ε ω(m − 2)− 2ψ2

]

On the other hand, linearization of the stationary problem is related to the

spectrum of the self-adjoint eigenvalue problem

H(m)
ω

[

V (m)

W (m−2)

]

= ε λ

[

V (m)

W (m−2)

]

.

Zero eigenvalue of H
(m)
ω signals out a bifurcation of the symmetric vortex.
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Small bound state limit

Transformation of linearizations in the case of rotation

Adopting new variables ρ = r
√

1 + ε ω and ν = ε /(1 + ε ω), we transform the

spectral stability problem to the form,

Hm(ν)

[

Vm

Wm−2

]

= ν(σ + ω(m − 1))

[

1 0

0 −1

] [

Vm

Wm−2

]

, m ∈ Z,

and the self-adjoint eigenvalue problem to the form,

Hm(ν)

[

Vm

Wm−2

]

= νλ

[

Vm

Wm−2

]

+ νω(m − 1)

[

1 0

0 −1

] [

Vm

Wm−2

]

,

The symmetric vortex is spectrally stable for

ν ∈
(

ν0,
1

4

)

⇔ ǫ ∈
(

ǫ0
1 − ǫ0ω

,
1

4 − ω

)

.

There exists a bifurcation of the symmetric vortex for m = 2 and

ω = ω0(ν) ∈ (0,2) corresponding to ǫ < 1
2
. Moreover, if λ(ω) is the

eigenvalue such that λ(ω0) = 0, then λ′(ω0) > 0.
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Small bound state limit

Bifurcation of asymmetric vortices

The asymmetric vortex bifurcates for ω > ω0 via the supercritical pitchfork

bifurcation with radial symmetry. Its center is placed at a point on the circle of

radius a on the (ξ, η)-plane, where a ∼
√

ε(ω − ω0).
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Small bound state limit

Lyapunov–Schmidt reductions I

Root finding problem for N(u;ω) : H2(R2)× R → L2(R2):

N(u;ω) := −ǫ2(uξξ + uηη) + (ξ2 + η2 − 1 + |u|2)u + iǫω(ξuη − ηuξ).

The kernel of linearization at the bifurcation point:

Ker(DuN(ψνeiθ;ω0)) = span

{[

ψν(r)e
iθ

−ψν(r)e
−iθ

]

,

[

V2(r)e
2iθ

W0(r)

]

,

[

W0(r)
V2(r)e

−2iθ

]}

.

Decomposition

u = ψν(r)e
iθ + aV2(r)e

2iθ + āW0(r) + U, ω = ω0 +Ω.
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Small bound state limit

Lyapunov–Schmidt reductions II

After a near-identity transformations that eliminates quadratic terms in a, we

obtain the normal form equation

a
(

ǫΩγ + β|a|2 +O(|a|4)
)

= 0,

where

γ = λ′(ω0)
(

‖V2‖2
L2

r
+ ‖W0‖2

L2
r

)

> 0

and

β = − 1

512
+O(µ), µ :=

1

16
− ν2 > 0.

For small µ, we have the supercritical pitchfork bifurcation with radial

symmetry:

|a|2 = 32ǫ(ω − ω0) +O((ω − ω0)
2, µ),

and α = arg(a) is an arbitrary angle in the (ξ, η)-plane for the vortex core on

the circle of radius |a|.
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Small bound state limit

Orbital stability of vortices

Symmetric vortex of charge one u = ψν(r)e
iθ is a local minimizer of energy

E(u) in space X for ω > ω0. Therefore, it is orbitally stable in the sense: for

any σ > 0 there is a δ > 0, such that if ‖u(x ,0)− ψν(r)e
iθ‖X ≤ δ, then

inf
β∈R

‖u(x , t)− eiβψν(r)e
iθ‖X ≤ σ, t ∈ R+,

The new asymmetric vortex u = uε(x ;α) is a saddle point of energy E(u) in

space X . The linearization operator DuN(uε;ω) has exactly one negative

eigenvalue and the two-dimensional kernel:

Ker(DuN(uε;ω)) = span

{[

uε

−ūε

]

,

[

∂αuε

∂αūε

]}

.

We show that this vortex is also orbitally stable in the sense: for any σ > 0

there is a δ > 0, such that if ‖u(x ,0)− uε(x ,0)‖X ≤ δ, then

inf
(α,β)∈R2

‖u(x , t)− eiβuε(x ;α)‖X ≤ σ, t ∈ R+.
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Small bound state limit

Stability of the asymmetric vortex

We need to prove that the linearization operator DuN(uε;ω) is non-negative in

the constrained space

L2
c(R

2) =

{

U ∈ L2(R2) : 〈V, σ3U〉 :=
∫

R2

(

V̄U − W̄ Ū
)

dx = 0,

for every V =

[

V

W

]

∈ Ker(DuN(uε;ω))

}

,

where σ3 = diag(1,−1) respects the symplectic structure of the GP equation.

This result is equivalent to the fact that the matrix of symplectic projections

[

〈Vg , σ3Ṽg〉 〈Vr , σ3Ṽg〉
〈Vg , σ3Ṽr 〉 〈Vr , σ3Ṽr 〉

]

has exactly one negative eigenvalue, where Ṽg and Ṽr are generalized

eigenvectors of the generalized kernel of DuN(uε;ω). When ν → 1
4
, this is

confirmed by the explicit computations.
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Conclusion

Conclusion and open questions

We have described the local bifurcation results for the birth of steadily rotating

asymmetric vortices of charge one in the Gross-Pitaevskii equation with a

symmetric harmonic potential.

For supercritical rotational frequency, symmetric vortices of charge one are

local minimizers of energy and asymmetric vortices of charge one are saddle

points of the energy. Nevertheless, both vortices are orbitally stable with

respect to the time-dependent perturbations.

Open questions:

Can we extend these results to the entire existence interval
(

0, 1
4

)

(in

terms of parameter ν)?

Can we prove these results in the Thomas–Fermi limit ν → 0?

Can we consider other local minimizers of energy given by two, three,

and many vortices of charge one?
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