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Background

Gross-Pitaevskii equation

Density waves in cigar–shaped Bose–Einstein condensates with repulsive
inter-atomic interactions and a harmonic potential are modeled by the
Gross-Pitaevskii equation

ivτ = −1
2
∇2

ξv +
1
2
|ξ|2v + |v |2v − µv ,

where µ is the chemical potential, ξ ∈ R
d , and ∇2

ξ is the Laplacian in ξ.

Using the scaling transformation,

v(ξ, t) = µ1/2u(x , t), ξ = (2µ)1/2x , τ = 2t ,

the Gross–Pitaevskii equation is transformed to the semi-classical form

i ε ut + ε2 ∇2
xu + (1 − |x |2 − |u|2)u = 0,

where ε = (2µ)−1 is a small parameter.
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Background

Ground (vortex-free) state

Limit µ→ ∞ or ε→ 0 is referred to as the semi-classical or Thomas–Fermi
limit. Physically, it is the limit of large density of the atomic cloud.

The ground state ηε is the real positive solution of the stationary equation,

ε2 ∇2
xηε + (1 − |x |2 − η2

ε)ηε = 0, x ∈ R
2.

For small ε > 0, the ground state ηε ∈ C∞(R) decays to zero as |x | → ∞
faster than any exponential function

0 < ηε(x) ≤ C ε1/3 exp
(

1 − |x |2
4 ε2/3

)

, for all |x | ≥ 1.

The Thomas–Fermi approximation is

η0(x) := lim
ε→0

ηε(x) =

{

(1 − |x |2)1/2, for |x | < 1,
0, for |x | > 1,
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Background

Vortex states

The vortex uε is a complex-valued solution of the stationary equation,

ε2 ∇2
xuε + (1 − |x |2 − |uε|2)uε = 0, x ∈ R

2.

The product representation

u(x , t) = ηε(|x |)v(x , t)

brings the Gross–Pitaevskii equation to the equivalent form

i ε η2
εvt + ε2 ∇x

(

η2
ε∇xv

)

+ η4
ε(1 − |v |2)v = 0,

where lim|x|→∞ |v(x)| = 1.

Symmetric vortex of charge m ∈ N corresponds to the choice v = ψ(r/ ε)eimθ,
where (r , θ) are polar coordinates on R

2 and ψ(r/ ε) → 1 as r → ∞.
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Review of results

Experimental studies of vortices

Absorption images of a BEC stirred with a laser beam.
From Madison et al., 2000.
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Review of results

Experimental studies of vortex precession

Vortex precession in a trapped two-component BEC.
From Anderson et al., 2000.
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Review of results

Theoretical studies of vortices

Castin & Dum (1999) - rotating vortices can become local and later global
minimizers of energy for larger frequencies

Aftalion & Du (2001), Ignat & Millot (2006) - proofs that a vortex of charge
one is a global minimizer for larger frequencies

Pelinovsky & Kevrekidis (2011) - variational approximations of
eigenvalues for single vortices, dipoles and quadrupoles by the
Rayleight–Ritz method

Kollar & Pego (2012) - numerical computations of eigenvalues for
charge-one and charge-two vortices by using Evans functions
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Review of results

Main results I

Theorem (P. & Kevrekidis, 2012)

For every ǫ ∈
(

0, 1
4

)

, there exists a unique classical solution u = ψǫ(r)eiθ for
the symmetric vortex of charge one.

For small |ǫ− 1
4 |, the symmetric vortex is spectrally stable in the sense that all

eigenvalues of the spectral stability problem are purely imaginary and
semi-simple, except for the double zero eigenvalue.

The symmetric vortex is a saddle point of the Gross–Pitaevskii energy

E(u) =

∫

R2

(

ε2 |∇u|2 + (|x |2 − 1)|u|2 +
1
2
|u|4

)

dx

but it is a global minimizer of the reduced energy (u = ψ(r)eiθ)

E1(ψ) =

∫ ∞

0

[

ǫ2
(

dψ
dr

)2

+
ǫ2ψ2

r2 + (r2 − 1)ψ2 +
1
2
ψ4

]

rdr .
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Review of results

Spectral stability of symmetric charge-one vortices

2 4 6 8 10 12
0.5

1

1.5

2

2.5

3

µ/Ω

ω
/Ω

5 10 15 20
0

0.5

1

1.5

2

λ
i/
Ω

µ/Ω

Stable (purely imaginary) eigenvalues of the spectral stability problem for the
ground state ηε (left) and the symmetric vortex ψ(r)eiθ (right).
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Review of results

Main results II

Theorem (P. & Kevrekidis, 2012)

For every ǫ ∈
(

0, 1
2

)

with small |ǫ− 1
2 |, there is a rotational frequency

ω0 ∈ (0,2) such that for every ω > ω0 with small |ω − ω0|, besides the
symmetric vortex u = ψ(r)eiθ, there exists an asymmetric vortex solution
u = uα(x , y) of the Gross–Pitaevskii equation with a rotational term.

The center of |uα| is placed on the circle of radius |a| centered at the origin
(0,0) ∈ R

2 at an arbitrary angle α. There is C > 0 such that

|a| ≤ C
√

ǫ(ω − ω0).

For ω > ω0, the symmetric vortex is a local minimizer of the energy E(u),
whereas the asymmetric vortex is a saddle point of the energy E(u).
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Review of results

Steady precession of asymmetric charge-one vortices
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Spatial contour plots of the amplitude (left) and phase (right) of a rotating
charge-one vortex.
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Review of results

Main results III

Theorem (P. & Kevrekidis, 2012)

For every ǫ ∈
(

0, 1
2

)

and ω > ω0 with small |ǫ− 1
2 | and |ω − ω0|, the symmetric

vortex of charge one is orbitally stable in the following sense: for any σ > 0
there is a δ > 0, such that if ‖u(0) − ψ(r)eiθ‖X ≤ δ, then

inf
β∈R

‖u(t) − eiβψ(r)eiθ‖X ≤ σ, t ∈ R+,

At the same time, the asymmetric vortex is also orbitally stable in the following
sense: for any σ > 0 there is a δ > 0, such that if ‖u(0) − u0‖X ≤ δ, then

inf
(α,β)∈R2

‖u(t) − eiβuα‖X ≤ σ, t ∈ R+.

Here X =
{

u ∈ H1(R2) : |x |u ∈ L2(R2)
}

is the energy space of the
Gross–Pitaevskii equation.
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Review of results

Spectral stability of rotating charge-one vortices
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Left: eigenvalues of the spectral stability problem for the symmetric vortex
ψ(r)eiθ. Right: eigenvalues of the spectral stability problem for the
asymmetric vortex uα.
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Small bound state limit

Steadily rotating vortices

In the rotating coordinate frame,
[

x
y

]

=

[

cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

] [

ξ
η

]

, ω ∈ R,

the Gross–Pitaevskii equation takes the form,

i εut + ε2(uξξ + uηη) + (1 − ξ2 − η2 − |u|2)u − i ε ω(ξuη − ηuξ) = 0.

The symmetric vortex of charge one is given by

u(ξ, η) =
√

1 + ε ωψν(r)eiθ,
√

ξ2 + η2 =
√

1 + ε ωr ,

where ψν(r) > 0 satisfies

ν2
(

d2ψν

dr2 +
1
r

dψν

dr
− ψν

r2

)

+ (1 − r2 − ψ2
ν)ψν = 0, ν =

ε

1 + ε ω
.
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Small bound state limit

Existence of symmetric vortex

Schrödinger operator for the quantum harmonic oscillator

H(ν) := −ν2(∂2
x +∂2

y )+x2+y2−1, D(H(ν)) :=
{

u ∈ H2(R2) : |x |2u ∈ L2(R2)
}

.

The spectrum of H(ν) in L2(R2) is purely discrete:

σ(H(ν)) =
{

λn,m(ν) = −1 + 2ν(n + m + 1), (n,m) ∈ N
2
0

}

,

ν = 1
2 - bifurcation of a ground state ην(r) (n = m = 0) existing in (0, 1

2 )

ν = 1
4 - bifurcation of a charge-one vortex ψǫ(r)eiθ (n + m = 1) in (0, 1

4 )

Lemma

Let µ := 1
16 − ν2 and ψ0(r) = re−2r2

. Then,

sup
r∈R+

∣

∣

∣
ψν(r) − (128µ)1/2ψ0(r)

∣

∣

∣
≤ Cµ3/2.
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Small bound state limit

Energy of the symmetric vortex

Substituting
u(x , y) = ψν(r)eiθ + U(x , y)

to the energy functional E(u), we obtain

E(u) − E(ψνeiθ) = 〈U,H(ν)U〉L2 + O(‖U‖3
H1), (1)

where U = [U, Ū]T . Using the decomposition in normal modes,

U(x , y) =
∑

m∈Z

Vm(r)eimθ, Ū(x , y) =
∑

m∈Z

Wm(r)eimθ,

we obtain an uncoupled eigenvalue problem for components (Vm,Wm−2):

Hm(ν)

[

Vm

Wm−2

]

= νλ

[

Vm

Wm−2

]

, m ∈ Z,

where

Hm(ν) =

[

−ν2∆m + r2 − 1 + 2ψ2
ν ψ2

ν

ψ2
ν −ν2∆m−2 + r2 − 1 + 2ψ2

ν

]

.
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Small bound state limit

Symmetric vortex as a saddle point of energy

Recall

Hm(ν) =

[

−ν2∆m + r2 − 1 + 2ψ2
ν ψ2

ν

ψ2
ν −ν2∆m−2 + r2 − 1 + 2ψ2

ν

]

.

and

σ(−ν2∆m + r2 − 1) = {λn,m(ν) = −1 + 2ν(2n + m + 1), n ∈ N0} .

Lemma

For ν < 1
4 with small |ν − 1

4 |, there exists exactly one negative eigenvalue
λ0(ν), which has algebraic multiplicity two and is associated to the
eigenvectors of H2(ν) and H0(ν). Moreover, λ0 is a C1 function of ν satisfying

lim
ν↑ 1

4

λ0(ν) = −2.

The zero eigenvalue of H1(ν) is simple and is associated with the gauge
symmetry of the Gross-Pitaevskii equation.
All other eigenvalues of Hm(ν) are strictly positive.
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Small bound state limit

Spectral stability of symmetric vortex

Non-self-adjoint spectral problem:

Hm(ν)

[

Vm

Wm−2

]

= νλ

[

1 0
0 −1

] [

Vm

Wm−2

]

, m ∈ Z.

Lemma

For ν < 1
4 with small |ν − 1

4 |, the spectral problem admits only real eigenvalues
λ of equal algebraic and geometric multiplicities, in addition to the double zero
eigenvalue for m = 1.
The smallest nonzero eigenvalue for m = 2 is λ = +ω0(ν) and for m = 0 is
λ = −ω0(ν), where ω0(ν) > 0 and limν↑ 1

4
ω0(ν) = 2. These eigenvalues are

simple and correspond to the eigenvectors V±(ν) such that

〈V+(ν),H2(ν)V+(ν)〉L2
r
= 〈V−(ν),H0(ν)V−(ν)〉L2

r
< 0.

The quadratic form associated with operators Hm(ν) is strictly positive for the
eigenvectors corresponding to any other eigenvalue of the spectral problems.
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Small bound state limit

Two linearizations in the case of rotation

If we substitute u(ξ, η, t) = ψν(r)eiθ + U(ξ, η, t) to the Gross–Pitaevskii
equation with the rotation and adopt the decomposition

U(ξ, η, t) =
∑

m∈Z

V (m)(ρ)eimθe−iσt , Ū(ξ, η, t) =
∑

m∈Z

W (m)(ρ)eimθe−iσt ,

then we end up with the spectral stability problem

H(m)
ω

[

V (m)

W (m−2)

]

= ε σ

[

1 0
0 −1

] [

V (m)

W (m−2)

]

,

where

H(m)
ω =

[

1 − ρ2 + ε2 ∆m + ε ωm − 2ψ2 −ψ2

−ψ2 1 − ρ2 + ε2 ∆m−2 − ε ω(m − 2) − 2ψ2

]

On the other hand, linearization of the stationary problem is related to the
spectrum of the self-adjoint eigenvalue problem

H(m)
ω

[

V (m)

W (m−2)

]

= ε λ

[

V (m)

W (m−2)

]

.

Zero eigenvalue results in a bifurcation of stationary vortices.
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Small bound state limit

Transformation of linearizations in the case of rotation

Adopting new variables ρ =
√

1 + ε ωr and ν = ε /(1 + ε ω), we transform the
spectral stability problem to the form,

Hm(ν)

[

Vm

Wm−2

]

= ν(σ + ω(m − 1))

[

1 0
0 −1

] [

Vm

Wm−2

]

, m ∈ Z,

and the self-adjoint eigenvalue problem to the form,

Hm(ν)

[

Vm

Wm−2

]

= νλ

[

Vm

Wm−2

]

+ νω(m − 1)

[

1 0
0 −1

] [

Vm

Wm−2

]

,

The symmetric vortex is spectrally stable for

ν ∈ (ν0,
1
4

) ⇔ ǫ ∈
(

ǫ0
1 − ǫ0ω

,
1

4 − ω

)

.

There exists a bifurcation of the symmetric vortex for m = 2 and
ω = ω0(ν) ∈ (0,2) corresponding to ǫ < 1

2 . Moreover, if λ(ω) is the
eigenvalue such that λ(ω0) = 0, then λ′(ω0) > 0.
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Small bound state limit

Bifurcation of asymmetric vortices

Rotating vortex is born via the supercritical pitchfork bifurcation with radial
symmetry for ω > ω0. Its center is placed at a point on the circle of radius a on
the (ξ, η)-plane, where a ∼

√

ε(ω − ω0).
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Small bound state limit

Lyapunov–Schmidt reductions I

Root finding problem for N(u;ω) : H2(R2) × R → L2(R2):

N(u;ω) := −ǫ2(uξξ + uηη) + (ξ2 + η2 − 1 + |u|2)u + iǫω(ξuη − ηuξ).

The kernel of linearization at the bifurcation point:

Ker(DuN(ψ0eiθ;ω0)) = span

{[

ψ0(r)eiθ

−ψ0(r)e−iθ

]

,

[

V2(r)e2iθ

W0(r)

]

,

[

W0(r)
V2(r)e−2iθ

]}

Decomposition

u = ψ0(r)eiθ + aV2(r)e2iθ + āW0(r) + U, ω = ω0 + Ω.
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Small bound state limit

Lyapunov–Schmidt reductions II

After near-identity transformations to eliminate quadratic terms in a, we obtain
the normal form equation

a
(

2ǫΩσ + β|a|2 + O(|a|4)
)

= 0,

where
2σ = λ′(ω0)

(

‖V2‖2
L2

r
+ ‖W0‖2

L2
r

)

> 0

and

β = − 1
512

+ O(µ), µ :=
1

16
− ν2 > 0.

For small µ, we have the supercritical pitchfork bifurcation with radial
symmetry:

|a|2 = 32ǫ(ω − ω0) + O((ω − ω0)
2, µ),

and α = arg(a) is an arbitrary angle in the (ξ, η)-plane for the vortex core on
the circle of radius |a|.
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Small bound state limit

Orbital stability of vortices

Symmetric vortex of charge one ψ(r)eiθ is a local minimizer of energy E(u) in
space X for ω > ω0. Therefore, it is orbitally stable in the sense: for any σ > 0
there is a δ > 0, such that if ‖u(0) − ψ(r)eiθ‖X ≤ δ, then

inf
β∈R

‖u(t) − eiβψ(r)eiθ‖X ≤ σ, t ∈ R+,

The new asymmetric vortex uα is a saddle point of energy E(u) in space X .
The linearization operator DuN(uα;ω) has exactly one negative eigenvalue
and the two-dimensional kernel:

Ker(DuN(uα;ω)) = span

{[

uα

−ūα

]

,

[

∂αuα

∂αūα

]}

.

We show that this vortex is also orbitally stable in the sense: for any σ > 0
there is a δ > 0, such that if ‖u(0) − u0‖X ≤ δ, then

inf
(α,β)∈R2

‖u(t) − eiβuα‖X ≤ σ, t ∈ R+.
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Small bound state limit

Stability of the asymmetric vortex

We need to prove that the linearization operator DuN(uα;ω) is non-negative in
the constrained space

L2
c(R

2) =

{

U ∈ L2(R2) : 〈V, σ3U〉 :=

∫

R2

(

V̄U − W̄ Ū
)

dx = 0,

for every V =

[

V
W

]

∈ Ker(DuN(uα;ω))

}

,

where σ3 = diag(1,−1) is due to the symplectic structure of the
Gross-Pitaevskii equation.

This result is equivalent to the fact that the matrix of symplectic projections
[

〈Vg , σ3Ṽg〉 〈Vr , σ3Ṽg〉
〈Vg , σ3Ṽr 〉 〈Vr , σ3Ṽr 〉

]

has exactly one negative eigenvalue, where

Ṽg = H−1
[

uα

ūα

]

, Ṽr = H−1
[

∂αuα

−∂αūα

]

.

are generalized eigenvectors of the generalized kernel of DuN(uα;ω).
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]

has exactly one negative eigenvalue, where
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Conclusion

Conclusion and open questions

We have described the local bifurcation results for the birth of stable rotating
asymmetric vortices of charge one in the Gross-Pitaevskii equation with a
symmetric harmonic potential.

For supercritical rotational frequency, symmetric vortices of charge one are
local minimizers of energy and asymmetric vortices of charge one are saddle
points of the energy. Nevertheless, both vortices are orbitally stable in the
time-dependent perturbations.

Open question: Can these results be extended in the entire existence interval
(

0, 1
4

)

(in terms of parameter ν)? In particular, can these results be proven in
the Thomas–Fermi limit ν → 0 (ǫ→ 0)?
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