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Ostrovsky equation for rotating fluid

The Ostrovsky equation is a model for small-amplitude long waves in a
rotating fluid of a finite depth [Ostrovsky, 1978]:

(ut + vtz — BUzez)z = YU,

where 8 and v are real coefficients.

When 8 = 0 and v = 1, the Ostrovsky equation is
(ut + uuz)a: =u,

and is known under the names of

@ the short-wave equation [Hunter, 1990];

@ Ostrovsky—Hunter equation [Boyd, 2005];

@ reduced Ostrovsky equation [Stepanyants, 2006];

@ the Vakhnenko equation [Vakhnenko & Parkes, 2002].



Short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses
with few cycles on the pulse scale [Schafer, Wayne 2004]:

Ugt = U+ % (u3)zz’

where all coefficients are normalized thanks to the scaling invariance.

The short-pulse equation
@ replaces the nonlinear Schrédinger equation for short wave packets

@ features exact solutions for modulated pulses

@ enjoys inverse scattering and an infinite set of conserved quantities



Well-posedness results

@ T. Schafer and C.E. Wayne (2004) proved local existence in H?(R).

@ A. Stefanov et al. (2010) considered a family of the generalized
short-pulse equations
Uzt = U+ (up)zz

and proved scattering to zero for small initial data if p > 4.

©

Y. Liu et al. (2009,2010) proved global existence for small initial data and
wave breaking for large initial data if p = 3.

©

Y. Liu et al. (2010) proved wave breaking for sufficiently /arge initial data
if p = 2 but found no proof of global existence for small initial data.

©

T. Johnson et al. (2012) suggested a sharp criterion that distinguished
between global existence and wave breaking for p = 2.

©

R. Grimshaw, D.P. (2014) proved global existence for small initial data.



Integrability of the short-pulse equation

The short-pulse equation is

1,3
umt:u—l—g(u)m, zeR, te[0,T].



Integrability of the short-pulse equation

The short-pulse equation is

1,3
uu:u—l—g(u)m, zeR, te[0,T].

Let z = z(y, t) satisfy
Ty = COSW,

{ Tt = —%w?
If w = w(y, t) satisfies the sine—Gordon equation in characteristic
coordinates [A. Sakovich, S. Sakovich (2006)]

wy =sin(w), yeR, te]0,T],

then u(z,t) = we(y(z,t),t) solves the short-pulse equation.
The map R 5 y — = € Ris invertible for ¢ € [0, T7, if

cos(w) >0 or |w|re < g



Solutions of the short-pulse equation

A kink of the sine—Gordon equation gives a loop solution of the short-pulse

equation:
u = 2sech(y + t),
x =y — 2tanh(y +t).

u(z,t)
J1

u(x,t)

Figure : The loop solution u(z, t) to the short-pulse equation



Solutions of the short-pulse equation

A breather of the sine—Gordon equation gives a pulse solution of the
short-pulse equation:

msinysinh ¢ +ncosycoshg

m?2sin? ) + n?2 cosh? ¢
m sin 2¢p — nsinh 2¢ *m( o t+l)+l
m?2sin® ¢ + n2 cosh? ¢ y=m m m’

u(y,t) = 4mn

uly=—mt+ 7)),

z(y,t) =y +2mn

where
p=m(y+t), v=n(y—t), n=+v1-—m?
and m € R is a free parameter.

Figure : The pulse solution to the short-pulse equation with m = 0.25



Local well-posedness of the short-pulse equation

Theorem (Schéafer & Wayne, 2004)

Letuo € H?. There exists a maximal existence time T = T (uo) > 0 and a
unique solution to the short-pulse equation

u(t) € C([0,T), H*)nC*([0,T),H")

that satisfies u(0) = uo and depends continuously on u.

Remarks:

@ The proof can be extended to any s > g (Stefanov et al, 2010).
@ There is a constraint on solutions of the short-pulse equation

/u(:v,t)dx =0, ¢t>0.
R

A better space is H* N H~* for s > 2.



Conserved quantities of the short-pulse equation

A bi-infinite hierarchy of conserved quantities of the short-pulse equation was
found in Brunelli [J.Math.Phys. 46, 123507 (2005)]:
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Conserved quantities E_1, Ey, E1, F» are defined in the energy space

H*(R) N H'(R).



Global well-posedness of the short-pulse equation

Theorem (P. & Sakovich, 2010)

Letuo € H? such that ||u||32 + ||uf||32 < 1. Then the short-pulse equation
admits a unique solution u(t) € C(R, H?) with u(0) = uo.

The constant values of Ey, E1 and E; are bounded by ||uo|| ;2 as follows:

Eo = /uzdw = ||uo||iz,
R
Uy 1 2
B = -
1 /1+\/m 2||u0”L27

Uz 2
B = /md g 13-

so that 2F; + E> < 1.

The local existence time T" > 0 is inverse proportional to the norm ||uo|| ;2 of
the initial data uo. To extend T to oo, we need to control the norm ||u(t)|| 2
by a T-independent constant on [0, T7.



Sketch of the proof

@ Let g(z,t) = +u2 . Then, we obtain
2 2
e < [ e Y 0 <o,
rl14+v1T4+u2 1+u2
2
Auql22 < /\/1+u3[81"7“ dz = B»,
|| ‘I”L? = . m T Y

hence, ||q¢(t)||g1 < V2E1 + E2 < 1,t € [0,T].

@ Thanks to Sobolev’s embeddlng llgll e < f||q||H1 < 1, the inverse
transformation u, = \/@ satisfies the bound

llgll

V1= llall

U]l <

or equivalently

_2E 4B v te[0,7)
) b b .

t < | E
o) < (B0 + (2 P



Sharper condition for global well-posedness

Letuo € H? such that 2/2E, E» < 1. Then the short-pulse equation admits a
unique solution u(t) € C(R, H?) with u(0) = uo.

Let a > 0 be arbitrary. If u(z, t) is a solution of the short-pulse equation, then
(%, 1) is also a solution of the same equation with

P=ox, t=a 't, a(zi1)=ou(z,t).

The scaling invariance yields transformation £; = aE; and E» = o~ Es. For
a given ug € H?, a family of initial data @, € H? satisfies

d(a) = 2B + By = 20E1 + o~ 'Ey > 2V2E 1 Ey, Va > 0.

If 2¢/2E1 E» < 1, there exists a such that @ is defined for any ¢ € R.



Criterion for wave breaking

Consider the Cauchy problem for the inviscid Burgers equation
_ 1,2
{“t_2“_““”’ zER, t>0.

The Cauchy problem can be solved by the method of characteristics. The
finite-time blow-up occurs for any ue(z) € C*(R) if there is a point zp € R
such that uo (o )ug(zo) > 0. The blow-up time is

. 1 - ul
T = gg&{m : 0(§ug(§) > O}‘



Criterion for wave breaking

Consider the Cauchy problem for the inviscid Burgers equation
_ 1,2
{“t_2“““”’ z€R, t>0.

The Cauchy problem can be solved by the method of characteristics. The
finite-time blow-up occurs for any ue(z) € C*(R) if there is a point zp € R
such that uo (o )ug(zo) > 0. The blow-up time is

1

T= ?éﬂf«{m o uo(§uo(§) > 0}~

Letuo € H*(R) and u(t) be a local solution of the Cauchy problem for the
short-pulse equation. The solution blows up in a finite time T < oo in the
sense limyr ||u(-, t)|| g2 = oo if and only if

lim sup u(z, t)ug (x,t) = +oo.
im sup u(a, e z. 1)




Short-pulse equation in a periodic domain

The short-pulse equation on the unit circle S is given by

{ut:%u2uz+8;1u, €S t>0

u(z,0) = uo(x),

where 0, 'u is the mean-zero anti-derivative,

az_lu:/ u(:c/,t)dx/—// w(z', t)dx' dz.
0 sJo

@ The assumption [, uo(x)dz = 0 is necessary for existence.
@ The following quantities are constant as long as the solution exists:

E0:/u2dx, E1 2/\/1+u%da:
s s



Method of characteristics

Let¢ € S,t € [0,T), and denote
z=X(1), ulzt)=UED), 05 ulz,t)=G(1).
At characteristics x = X (¢,t), we obtain

X(t)=-1iU?, U(t) =G,
{ X(0) =¢, { U(0) =



Method of characteristics

Let¢ € S,t € [0,T), and denote
z=X(1), ulzt)=UED), 05 ulz,t)=G(1).
At characteristics x = X (¢,t), we obtain

{ X(t)=-1iU?, { U(t)
X(0)=¢, U(0) = uo (),

[
«

Both U and G are bounded on the smooth solutions:
lu(z, )] < /|uw(1’,t)\da: < B
S

and

|6‘;1u(x, t)| < /|u(w,t)|daz <+VEj.
s



Sufficient condition for wave breaking

Theorem (Liu, P. & Sakovich, 2009)

Letuo € H*(S) and [, uo(x) du = 0. Assume that there exists z, € R such
that uo(zo)ug (;vo) > 0 and

1/3

. E?

either ‘U6($0)| > 711/2 2
4E,

1 1/2
o)) > B + (268 *uaan)f* - 552)
5

1/3
/ 2
4Eé/2) , Juo(o)||uo(xo)|” > En.

or lug(xo)| < (
Then there exists a finite time T € (0, co) such that the solution
u(t) € C([0,T), H*(S)) blows up with the property

li = while i . ~ < FEy.
tlTI’}l ilgé)u($,t)ux($,t) o0, € tlTI;l lu(, t)llLee < Ex




Sketch of the proof

Let V(&,t) = ua (X (&,t),t) and W(E,t) = U(E,t)V (€, t). Then

Vo= VW4T,
w W24+ VG+U>

Under the conditions of the theorem, there exists & € S such that V (&, t)
and W (&, t) satisfy the apriori estimates

V. > VW - Ey,
w > W?-VVE,.

By comparison theorem, V' (&o,t) > V(&o,t) and W (&o,t) > W (o, t), where
the lower solution (V, W) diverges to infinity in a finite time.



Criteria of well-posedness and wave breaking

Consider Gaussian initial data
uo(z) = a(l — 2ba:2)efbw2, x €R,

where (a,b) are arbitrary and [;, uo(x)dz = 0 is satisfied.

30 ==

x  wave breaking
254 + well-posedness|
20
b 151
10!
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Global solutions exist in the red region and wave breaking occurs in the blue
region.



Numerical simulation

Using the pseudospectral method, we solve

8A o 7:,\ ik —1\3
ik =—ru+ 2 F [(F9)°] L k#0, t>0.

Consider the 1-periodic initial data

uo(x) = acos(2wx)

@ Criterion for wave breaking: a > 1.053.
@ Criterion for global solutions: a < 0.0354.



Evolution of the cosine initial data
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Solution surface u(z, t) (left) and the supremum norm W (t) (right)
for a = 0.2 (top) and a = 0.5 (bottom).




Local well-posedness of the reduced Ostrovsky equation

Theorem (Stefanov et al., 2010)

Letuo € H®, s > 3. There exists a maximal existence time T = T'(u) > 0
and a unique solution to the reduced Ostrovsky equation (u; + uuz )z = u,

u(t) € C([0,T), H*) nC*([0,T), H* ™),

that satisfies u(0) = uo and depends continuously on uy.

Integrability is based on the reduction to the Vakhnenko equation
(Vakhnenko, 1992), which is a sort of Hirota—Satsuma equation with a
reversed role of space-time variables. The conserved quantities are:

/ (1u3 + (8;1u)2) dzx,
R \3
Ey, = /quw.

R

Conserved quantities are not helpful to control solution in H°, s > %

E_



Global well-posedness of the reduced Ostrovsky equation

Theorem (Grimshaw & P., 2014)

Letuo € H® such that 1 — 3ug(x) > 0 for all z. Then the reduced Ostrovsky
equation admits a unique solution u(t) € C(R, H®) with u(0) = uo.

This result is based on the number of preliminary works:
@ Hone & Wang (2003) obtained Lax pair

'l/Jt + )\wmt + Uwz - Uzw = 07

@ Kraenkel et al. (2011) showed equivalence with the Bullough—Dodd
(Tzitzeica) equation
o’V -2V \%
ooz ©
@ Grimshaw et al. (2013) suggested the relevance of 1 — 3ug (z) from
asymptotic and numerical analysis.




Conserved quantities for the reduced Ostrovsky equation

Brunelli & Sakovich (2013) found bi-infinite sequence of conserved quantities
for the reduced Ostrovsky equation:

E_, = / <1u3 + (a;lu)"’) dz,
r \3
/u2dw
R

B = /R[(l—3um)1/3—1] dz,

(umzz)2
S L V—
Es /R(l—?)um)”?’ i

5
I

However, the quantity 1 — 3u,, needs to be controlled over the time span.



Characteristic variables for the reduced Ostrovsky equation

Starting with the reduced Ostrovsky equation

(ut +uug)s =u, xz€R, te€[0,T]

Let z = x(y,t) satisfy z = y + fot U(y,t")dt’ with u(z,t) = U(y,t). The
transformation y — « is invertible if

By, t) =1 +/0 Uy (y,t))dt' # 0.



Characteristic variables for the reduced Ostrovsky equation

Starting with the reduced Ostrovsky equation
(ut +uug)s =u, xz€R, te€[0,T]

Let z = x(y,t) satisfy z = y + fot U(y,t")dt’ with u(z,t) = U(y,t). The
transformation y — « is invertible if

By, t) =1 +/0 Uy (y,t))dt' # 0.

Let us introduce f(x,t) = (1 — 3uss)'/® = F(y,t). Then,
fit (wf)e =0 (F¢) =
so that F'(y,t)é(y, t) = Fo(y).
The reduced Ostrovsky equation is equivalent to the evolution equation

3155 V0B (F) = FRo)(F* = F ).



Sketch of the proof

o If 1 —3ug(z) > 0forall z € R, then Fy(y) > 0. We introduce

1 Y ! / — z
T _5/ Fo(y)dy', Fy,t):=e "™,
0
and obtain the Tzitzéica equation

>*v o2V GV
otdz '




Sketch of the proof

o If 1 —3ug(z) > 0forall z € R, then Fy(y) > 0. We introduce

1 Y ! / — z
T _5/ Fo(y)dy', Fy,t):=e "™,
0
and obtain the Tzitzéica equation

>*v o2V GV
otdz '

@ There exists a unique local solution of the Tzitzéica equation in class
V € C([0,T), H' (R)) for some T > 0 such that V(z,0) = Vo(z):

V(zt) = —% log (1 — 3uas (2,1))



Sketch of the proof

o If 1 —3ug(z) > 0forall z € R, then Fy(y) > 0. We introduce

1 Y ! / — z
T _5/ Fo(y)dy', Fy,t):=e "™,
0
and obtain the Tzitzéica equation

o’V o2V GV
otdz '

@ There exists a unique local solution of the Tzitzéica equation in class
V € C([0,T), H' (R)) for some T > 0 such that V(z,0) = Vo(z):

V(zt) = —% log (1 — 3uas (2,1))

@ The solution is extended globally in class V € C(R, H*(R)) thanks to the
conserved quantities

o} :/(26v+672"_3) dz, QQ_/R(E;‘Z/)ZdZ.
R

@ This yields a global solution to the reduced Ostrovsky equation in class
u € C(R, H*(R)).



The reduced Ostrovsky equation

Consider the Cauchy problem on a circle S of unit length:

ur + Uty = 03 'u, t>0,
u(0, ) = uo(x).

The inviscid Burgers equation u: + uu, = 0 develops wave breaking in a
finite time for any initial data (0, ) = uo(z) if uo(z) € C* and there is a point
xo such that ug(xo) < 0. The blow-up time is computed by the method of
characteristics:

1 ’
) ® < 0}'

Letuo € H*(S) and u(t) be a local solution of the Cauchy problem for the
reduced OstrovsKky equation. The solution blows up in a finite time T < oo in
the sense limyyr ||u(-, t)|| 2 = oo if and only if

}slTI%l 12f uz(t,x) = —oo, while ltlTI,TTISIC.lrp lu(t, z)| < 0.




Sufficient results for wave breaking

Theorem (Hunter, 1990)

Letuo(x) € C*(S), where S is a circle of unit length, and define

inf ug(z) = —m and sup |uo(x)| = M.
€S zeS

Ifm® > 4M (4 + m), a smooth solution u(t, =) breaks down at a finite time.

Theorem (Liu, P. & Sakovich, 2010)
Assume that uo(z) € H*(S), s > £ and [, uo(z) dz = 0. If either

[ G)* do <~ (Bali) "

or there is a o € S such that

1
ug(zo) < —1([luollze + Tilluoll ), @)

then the solution u(t, z) of the Cauchy problem blows up in a finite time.




Proof of the sufficient condition (1)

Direct computation gives
d 3 o 2 2
— fuzdr = 3 [ uy (—uz — Ulge + u) dx
dt Js s

= —2/uidx+3/uu§dm
s s

4 2
—2|ua|[La + 3l 2 lue s

IN

By Hélder’s inequality, we have

V)| < lfuslZe < lluslZe, V() = /Sui(t,x) dz < 0.

3
Let Qo = |lull72 = [luol|Z> and V(0) < — (3Qo) *. Then,

av 2 3Q0\° | 9Q3
&V o« _ 2%0 %0
dt_2<|v|3 4>+8’

Thereis T < co suchthat V(t) - —ccast 1 7.



Proof of the sufficient condition (2)

Let¢ €S,t € [0,T), and denote
x=X(&t), ulz,t)=U(Et), 05 u(z,t)=G(E1).
At characteristics x = X (&, t), we obtain
{ X(t) =1, { U(t) =G,
X(0) =¢, U(0) = uo(§),
Let V(&,t) = us(t, X(&,¢)). Then
V=-V4+U = V<-V>+(|uollpe= +t|luolr2)

Thereis T < co suchthat V(t) - —ccast 1 7.



Numerical simulation

Using the pseudospectral method, we solve
0 . i

_ N ik —1.\2
au,ﬁfgu,cfgjf[(}' u)]k, k#0, t>0.

Consider the 1-periodic initial data

uo(z) = acos(2wx) + bsin(4rz),

—— Theorem 1
—— Theorem 2|
—— Theorem 3




Evolution of the cosine initial data
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Figure : Solution surface u(t, z) (left) and inf, s us (¢, z) versus t (right) for a = 0.005,
b =0 (top) and a = 0.05, b = 0 (bottom). C' =~ —1.009 and B =~ 3.213.



For both the short-pulse and reduced Ostrovsky equations, we have ...
@ ... found sufficient conditions for global well-posedness for small data.
@ ... found sufficient conditions for wave breaking for large initial data.
@ ... illustrated both global existence and wave breaking numerically.

For the reduced Ostrovsky equation, there is a sharp criterion on the initial
data for the global solutions to exist.

It is not clear if a similar sharp criterion on the initial data exists for the
short-pulse equation.
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