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Ostrovsky equation for rotating fluid

The Ostrovsky equation is a model for small-amplitude long waves in a

rotating fluid of a finite depth [Ostrovsky, 1978]:

(ut + uux − βuxxx)x = γu,

where β and γ are real coefficients.

When β = 0 and γ = 1, the Ostrovsky equation is

(ut + uux)x = u,

and is known under the names of

the short-wave equation [Hunter, 1990];

Ostrovsky–Hunter equation [Boyd, 2005];

reduced Ostrovsky equation [Stepanyants, 2006];

the Vakhnenko equation [Vakhnenko & Parkes, 2002].



Short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses

with few cycles on the pulse scale [Schäfer, Wayne 2004]:

uxt = u+
1

6

(

u
3)

xx
,

where all coefficients are normalized thanks to the scaling invariance.

The short-pulse equation

replaces the nonlinear Schrödinger equation for short wave packets

features exact solutions for modulated pulses

enjoys inverse scattering and an infinite set of conserved quantities



Well-posedness results

T. Schafer and C.E. Wayne (2004) proved local existence in H2(R).

A. Stefanov et al. (2010) considered a family of the generalized

short-pulse equations

uxt = u+ (up)xx

and proved scattering to zero for small initial data if p ≥ 4.

Y. Liu et al. (2009,2010) proved global existence for small initial data and

wave breaking for large initial data if p = 3.

Y. Liu et al. (2010) proved wave breaking for sufficiently large initial data

if p = 2 but found no proof of global existence for small initial data.

T. Johnson et al. (2012) suggested a sharp criterion that distinguished

between global existence and wave breaking for p = 2.

R. Grimshaw, D.P. (2014) proved global existence for small initial data.



Integrability of the short-pulse equation

The short-pulse equation is

uxt = u+
1

6

(

u
3)

xx
, x ∈ R, t ∈ [0, T ].



Integrability of the short-pulse equation

The short-pulse equation is

uxt = u+
1

6

(

u
3)

xx
, x ∈ R, t ∈ [0, T ].

Let x = x(y, t) satisfy

{

xy = cosw,

xt = − 1
2
w

2
t .

If w = w(y, t) satisfies the sine–Gordon equation in characteristic

coordinates [A. Sakovich, S. Sakovich (2006)]

wyt = sin(w), y ∈ R, t ∈ [0, T ],

then u(x, t) = wt(y(x, t), t) solves the short-pulse equation.

The map R ∋ y → x ∈ R is invertible for t ∈ [0, T ], if

cos(w) > 0 or ‖w‖L∞ <
π

2
.



Solutions of the short-pulse equation

A kink of the sine–Gordon equation gives a loop solution of the short-pulse

equation:
{

u = 2 sech(y + t),
x = y − 2 tanh(y + t).
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Figure : The loop solution u(x, t) to the short-pulse equation



Solutions of the short-pulse equation

A breather of the sine–Gordon equation gives a pulse solution of the

short-pulse equation:











u(y, t) = 4mn
m sinψ sinhφ+ n cosψ coshφ

m2 sin2 ψ + n2 cosh2 φ
= u

(

y − π
m
, t+ π

m

)

,

x(y, t) = y + 2mn
m sin 2ψ − n sinh 2φ

m2 sin2 ψ + n2 cosh2 φ
= x

(

y − π
m
, t+ π

m

)

+ π
m
,

where

φ = m(y + t), ψ = n(y − t), n =
√

1−m2,

and m ∈ R is a free parameter.
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Figure : The pulse solution to the short-pulse equation with m = 0.25



Local well-posedness of the short-pulse equation

Theorem (Schäfer & Wayne, 2004)

Let u0 ∈ H2. There exists a maximal existence time T = T (u0) > 0 and a

unique solution to the short-pulse equation

u(t) ∈ C([0, T ), H2) ∩ C1([0, T ), H1)

that satisfies u(0) = u0 and depends continuously on u0.

Remarks:

The proof can be extended to any s > 3
2

(Stefanov et al, 2010).

There is a constraint on solutions of the short-pulse equation

∫

R

u(x, t)dx = 0, t > 0.

A better space is Hs ∩ Ḣ−1 for s > 3
2
.



Conserved quantities of the short-pulse equation

A bi-infinite hierarchy of conserved quantities of the short-pulse equation was

found in Brunelli [J.Math.Phys. 46, 123507 (2005)]:

· · ·

E−1 =

∫

R

(

1

24
u
4 − 1

2
(∂−1

x u)2
)

dx,

E0 =

∫

R

u
2
dx,

E1 =

∫

R

u2
x

1 +
√
1 + u2

x

dx,

E2 =

∫

R

u2
xx

(1 + u2
x)5/2

dx,

· · ·

Conserved quantities E−1, E0, E1, E2 are defined in the energy space

H2(R) ∩ Ḣ−1(R).



Global well-posedness of the short-pulse equation

Theorem (P. & Sakovich, 2010)

Let u0 ∈ H2 such that ‖u′
0‖2L2 + ‖u′′

0‖2L2 < 1. Then the short-pulse equation

admits a unique solution u(t) ∈ C(R, H2) with u(0) = u0.

The constant values of E0, E1 and E2 are bounded by ‖u0‖H2 as follows:

E0 =

∫

R

u
2
dx = ‖u0‖2L2 ,

E1 =

∫

R

u2
x

1 +
√
1 + u2

x

dx ≤ 1

2
‖u′

0‖2L2 ,

E2 =

∫

R

u2
xx

(1 + u2
x)5/2

dx ≤ ‖u′′
0‖2L2 .

so that 2E1 + E2 < 1.

The local existence time T > 0 is inverse proportional to the norm ‖u0‖H2 of

the initial data u0. To extend T to ∞, we need to control the norm ‖u(t)‖H2

by a T -independent constant on [0, T ].



Sketch of the proof

Let q(x, t) = ux√
1+u2

x

. Then, we obtain

‖q‖2L2 ≤
∫

R

u2
x

1 +
√
1 + u2

x

1 +
√
1 + u2

x

1 + u2
x

dx ≤ 2E1,

‖∂xq‖2L2 ≤
∫

R

√

1 + u2
x

[

∂x
ux√
1 + u2

x

]2

dx = E2,

hence, ‖q(t)‖H1 ≤
√
2E1 + E2 < 1, t ∈ [0, T ].

Thanks to Sobolev’s embedding ‖q‖L∞ ≤ 1√
2
‖q‖H1 < 1, the inverse

transformation ux = q√
1−q2

satisfies the bound

‖ux‖H1 ≤ ‖q‖H1

√

1− ‖q‖2
H1

,

or equivalently

‖u(t)‖H2 ≤
(

E0 +
2E1 + E2

1− (2E1 + E2)

)1/2

, t ∈ [0, T ].



Sharper condition for global well-posedness

Corollary

Let u0 ∈ H2 such that 2
√
2E1E2 < 1. Then the short-pulse equation admits a

unique solution u(t) ∈ C(R, H2) with u(0) = u0.

Let α > 0 be arbitrary. If u(x, t) is a solution of the short-pulse equation, then

ũ(x̃, t̃) is also a solution of the same equation with

x̃ = αx, t̃ = α
−1
t, ũ(x̃, t̃) = αu(x, t).

The scaling invariance yields transformation Ẽ1 = αE1 and Ẽ2 = α−1E2. For

a given u0 ∈ H2, a family of initial data ũ0 ∈ H2 satisfies

φ(α) = 2Ẽ1 + Ẽ2 = 2αE1 + α
−1
E2 ≥ 2

√
2E1E2, ∀α > 0.

If 2
√
2E1E2 < 1, there exists α such that ũ is defined for any t̃ ∈ R.



Criterion for wave breaking

Consider the Cauchy problem for the inviscid Burgers equation

{

ut =
1
2
u2ux,

u(x, 0) = u0(x),
x ∈ R, t ≥ 0.

The Cauchy problem can be solved by the method of characteristics. The

finite-time blow-up occurs for any u0(x) ∈ C1(R) if there is a point x0 ∈ R

such that u0(x0)u
′
0(x0) > 0. The blow-up time is

T = inf
ξ∈R

{

1

u0(ξ)u′
0(ξ)

: u0(ξ)u
′
0(ξ) > 0

}

.



Criterion for wave breaking

Consider the Cauchy problem for the inviscid Burgers equation

{

ut =
1
2
u2ux,

u(x, 0) = u0(x),
x ∈ R, t ≥ 0.

The Cauchy problem can be solved by the method of characteristics. The

finite-time blow-up occurs for any u0(x) ∈ C1(R) if there is a point x0 ∈ R

such that u0(x0)u
′
0(x0) > 0. The blow-up time is

T = inf
ξ∈R

{

1

u0(ξ)u′
0(ξ)

: u0(ξ)u
′
0(ξ) > 0

}

.

Lemma

Let u0 ∈ H2(R) and u(t) be a local solution of the Cauchy problem for the

short-pulse equation. The solution blows up in a finite time T <∞ in the

sense limt↑T ‖u(·, t)‖H2 = ∞ if and only if

lim
t↑T

sup
x∈R

u(x, t)ux(x, t) = +∞.



Short-pulse equation in a periodic domain

The short-pulse equation on the unit circle S is given by

{

ut =
1
2
u2ux + ∂−1

x u,

u(x, 0) = u0(x),
x ∈ S, t ≥ 0,

where ∂−1
x u is the mean-zero anti-derivative,

∂
−1
x u =

∫ x

0

u(x′, t)dx′ −
∫

S

∫ x

0

u(x′, t)dx′dx.

The assumption
∫

S
u0(x)dx = 0 is necessary for existence.

The following quantities are constant as long as the solution exists:

E0 =

∫

S

u
2
dx, E1 =

∫

S

√

1 + u2
xdx



Method of characteristics

Let ξ ∈ S, t ∈ [0, T ), and denote

x = X(ξ, t), u(x, t) = U(ξ, t), ∂
−1
x u(x, t) = G(ξ, t).

At characteristics x = X(ξ, t), we obtain

{

Ẋ(t) = − 1
2
U2,

X(0) = ξ,

{

U̇(t) = G,

U(0) = u0(ξ),



Method of characteristics

Let ξ ∈ S, t ∈ [0, T ), and denote

x = X(ξ, t), u(x, t) = U(ξ, t), ∂
−1
x u(x, t) = G(ξ, t).

At characteristics x = X(ξ, t), we obtain

{

Ẋ(t) = − 1
2
U2,

X(0) = ξ,

{

U̇(t) = G,

U(0) = u0(ξ),

Both U and G are bounded on the smooth solutions:

|u(x, t)| ≤
∫

S

|ux(x, t)|dx ≤ E1

and

|∂−1
x u(x, t)| ≤

∫

S

|u(x, t)|dx ≤
√
E0.



Sufficient condition for wave breaking

Theorem (Liu, P. & Sakovich, 2009)

Let u0 ∈ H2(S) and
∫

S
u0(x) dx = 0. Assume that there exists x0 ∈ R such

that u0(x0)u
′
0(x0) > 0 and

either |u′
0(x0)| >

(

E2
1

4E
1/2
0

)1/3

,

|u0(x0)||u′
0(x0)|2 > E1 +

(

2E
1/2
0 |u′

0(x0)|3 −
1

2
E

2
1

)1/2

,

or |u′
0(x0)| ≤

(

E2
1

4E
1/2
0

)1/3

, |u0(x0)||u′
0(x0)|2 > E1.

Then there exists a finite time T ∈ (0,∞) such that the solution

u(t) ∈ C([0, T ), H2(S)) blows up with the property

lim
t↑T

sup
x∈S

u(x, t)ux(x, t) = +∞, while lim
t↑T

‖u(·, t)‖L∞ ≤ E1.



Sketch of the proof

Let V (ξ, t) = ux(X(ξ, t), t) and W (ξ, t) = U(ξ, t)V (ξ, t). Then

{

V̇ = VW + U,

Ẇ = W 2 + V G+ U2.

Under the conditions of the theorem, there exists ξ0 ∈ S such that V (ξ0, t)
and W (ξ0, t) satisfy the apriori estimates

{

V̇ ≥ VW − E1,

Ẇ ≥ W 2 − V
√
E0.

By comparison theorem, V (ξ0, t) ≥ V(ξ0, t) and W (ξ0, t) ≥ W(ξ0, t), where

the lower solution (V,W) diverges to infinity in a finite time.



Criteria of well-posedness and wave breaking

Consider Gaussian initial data

u0(x) = a(1− 2bx2)e−bx2

, x ∈ R,

where (a, b) are arbitrary and
∫

R
u0(x)dx = 0 is satisfied.

Global solutions exist in the red region and wave breaking occurs in the blue

region.



Numerical simulation

Using the pseudospectral method, we solve

∂

∂t
ûk = − i

k
ûk +

ik

6
F
[

(

F−1
û
)3
]

k
, k 6= 0, t > 0.

Consider the 1-periodic initial data

u0(x) = a cos(2πx)

Criterion for wave breaking: a > 1.053.

Criterion for global solutions: a < 0.0354.



Evolution of the cosine initial data
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Local well-posedness of the reduced Ostrovsky equation

Theorem (Stefanov et al., 2010)

Let u0 ∈ Hs, s > 3
2
. There exists a maximal existence time T = T (u0) > 0

and a unique solution to the reduced Ostrovsky equation (ut + uux)x = u,

u(t) ∈ C([0, T ), Hs) ∩ C1([0, T ), Hs−1),

that satisfies u(0) = u0 and depends continuously on u0.

Integrability is based on the reduction to the Vakhnenko equation

(Vakhnenko, 1992), which is a sort of Hirota–Satsuma equation with a

reversed role of space-time variables. The conserved quantities are:

· · ·

E−1 =

∫

R

(

1

3
u
3 + (∂−1

x u)2
)

dx,

E0 =

∫

R

u
2
dx.

Conserved quantities are not helpful to control solution in Hs, s > 3
2
.



Global well-posedness of the reduced Ostrovsky equation

Theorem (Grimshaw & P., 2014)

Let u0 ∈ H3 such that 1− 3u′′
0 (x) > 0 for all x. Then the reduced Ostrovsky

equation admits a unique solution u(t) ∈ C(R, H3) with u(0) = u0.

This result is based on the number of preliminary works:

Hone & Wang (2003) obtained Lax pair

{

3λψxxx + (1− 3uxx)ψ = 0,
ψt + λψxx + uψx − uxψ = 0,

Kraenkel et al. (2011) showed equivalence with the Bullough–Dodd

(Tzitzeica) equation
∂2V

∂t∂z
= e

−2V − e
V
.

Grimshaw et al. (2013) suggested the relevance of 1− 3u′′
0 (x) from

asymptotic and numerical analysis.



Conserved quantities for the reduced Ostrovsky equation

Brunelli & Sakovich (2013) found bi-infinite sequence of conserved quantities

for the reduced Ostrovsky equation:

· · ·

E−1 =

∫

R

(

1

3
u
3 + (∂−1

x u)2
)

dx,

E0 =

∫

R

u
2
dx

E1 =

∫

R

[

(1− 3uxx)
1/3 − 1

]

dx,

E2 =

∫

R

(uxxx)
2

(1− 3uxx)7/3
dx

· · ·

However, the quantity 1− 3uxx needs to be controlled over the time span.



Characteristic variables for the reduced Ostrovsky equation

Starting with the reduced Ostrovsky equation

(ut + uux)x = u, x ∈ R, t ∈ [0, T ].

Let x = x(y, t) satisfy x = y +
∫ t

0
U(y, t′)dt′ with u(x, t) = U(y, t). The

transformation y → x is invertible if

φ(y, t) = 1 +

∫ t

0

Uy(y, t
′)dt′ 6= 0.



Characteristic variables for the reduced Ostrovsky equation

Starting with the reduced Ostrovsky equation

(ut + uux)x = u, x ∈ R, t ∈ [0, T ].

Let x = x(y, t) satisfy x = y +
∫ t

0
U(y, t′)dt′ with u(x, t) = U(y, t). The

transformation y → x is invertible if

φ(y, t) = 1 +

∫ t

0

Uy(y, t
′)dt′ 6= 0.

Let us introduce f(x, t) = (1− 3uxx)
1/3 = F (y, t). Then,

ft + (uf)x = 0 (Fφ)t = 0.

so that F (y, t)φ(y, t) = F0(y).

The reduced Ostrovsky equation is equivalent to the evolution equation

∂2

∂t∂y
log(F ) =

1

3
F0(y)(F

2 − F
−1).



Sketch of the proof

If 1− 3u′′
0 (x) > 0 for all x ∈ R, then F0(y) > 0. We introduce

z := −1

3

∫ y

0

F0(y
′)dy′, F (y, t) := e

−V (z,t)
,

and obtain the Tzitzéica equation

∂2V

∂t∂z
= e

−2V − e
V
.



Sketch of the proof

If 1− 3u′′
0 (x) > 0 for all x ∈ R, then F0(y) > 0. We introduce

z := −1

3

∫ y

0

F0(y
′)dy′, F (y, t) := e

−V (z,t)
,

and obtain the Tzitzéica equation

∂2V

∂t∂z
= e

−2V − e
V
.

There exists a unique local solution of the Tzitzéica equation in class

V ∈ C([0, T ], H1(R)) for some T > 0 such that V (z, 0) = V0(z):

V (z, t) = −1

3
log (1− 3uxx(x, t)) .



Sketch of the proof

If 1− 3u′′
0 (x) > 0 for all x ∈ R, then F0(y) > 0. We introduce

z := −1

3

∫ y

0

F0(y
′)dy′, F (y, t) := e

−V (z,t)
,

and obtain the Tzitzéica equation

∂2V

∂t∂z
= e

−2V − e
V
.

There exists a unique local solution of the Tzitzéica equation in class

V ∈ C([0, T ], H1(R)) for some T > 0 such that V (z, 0) = V0(z):

V (z, t) = −1

3
log (1− 3uxx(x, t)) .

The solution is extended globally in class V ∈ C(R, H1(R)) thanks to the

conserved quantities

Q1 =

∫

R

(

2eV + e
−2V − 3

)

dz, Q2 =

∫

R

(

∂V

∂z

)2

dz.

This yields a global solution to the reduced Ostrovsky equation in class

u ∈ C(R, H3(R)).



The reduced Ostrovsky equation

Consider the Cauchy problem on a circle S of unit length:

{

ut + uux = ∂−1
x u, t > 0,

u(0, x) = u0(x).

The inviscid Burgers equation ut + uux = 0 develops wave breaking in a

finite time for any initial data u(0, x) = u0(x) if u0(x) ∈ C1 and there is a point

x0 such that u′
0(x0) < 0. The blow-up time is computed by the method of

characteristics:

T = inf
ξ

{

1

|u′
0(ξ)|

: u
′
0(ξ) < 0

}

.

Lemma

Let u0 ∈ H2(S) and u(t) be a local solution of the Cauchy problem for the

reduced Ostrovsky equation. The solution blows up in a finite time T <∞ in

the sense limt↑T ‖u(·, t)‖H2 = ∞ if and only if

lim
t↑T

inf
x
ux(t, x) = −∞, while lim

t↑T
sup
x

|u(t, x)| <∞.



Sufficient results for wave breaking

Theorem (Hunter, 1990)

Let u0(x) ∈ C1(S), where S is a circle of unit length, and define

inf
x∈S

u
′
0(x) = −m and sup

x∈S

|u0(x)| =M.

If m3 > 4M(4 +m), a smooth solution u(t, x) breaks down at a finite time.

Theorem (Liu, P. & Sakovich, 2010)

Assume that u0(x) ∈ Hs(S), s > 3
2

and
∫

S
u0(x) dx = 0. If either

∫

S

(

u
′
0(x)

)3
dx < −

(

3

2
‖u0‖L2

)3/2

, (1)

or there is a x0 ∈ S such that

u
′
0(x0) < −1 (‖u0‖L∞ + T1‖u0‖L2)

1

2 , (2)

then the solution u(t, x) of the Cauchy problem blows up in a finite time.



Proof of the sufficient condition (1)

Direct computation gives

d

dt

∫

S

u
3
x dx = 3

∫

S

u
2
x

(

−u2
x − uuxx + u

)

dx

= −2

∫

S

u
4
x dx+ 3

∫

S

uu
2
x dx

≤ −2‖ux‖4L4 + 3‖u‖L2‖ux‖2L4 .

By Hölder’s inequality, we have

|V (t)| ≤ ‖ux‖3L3 ≤ ‖ux‖3L4 , V (t) =

∫

S

u
3
x(t, x) dx < 0.

Let Q0 = ‖u‖2L2 = ‖u0‖2L2 and V (0) < −
(

3
2
Q0

) 3

2 . Then,

dV

dt
≤ −2

(

|V | 23 − 3Q0

4

)2

+
9Q2

0

8
,

There is T <∞ such that V (t) → −∞ as t ↑ T .



Proof of the sufficient condition (2)

Let ξ ∈ S, t ∈ [0, T ), and denote

x = X(ξ, t), u(x, t) = U(ξ, t), ∂
−1
x u(x, t) = G(ξ, t).

At characteristics x = X(ξ, t), we obtain

{

Ẋ(t) = U,

X(0) = ξ,

{

U̇(t) = G,

U(0) = u0(ξ),

Let V (ξ, t) = ux(t,X(ξ, t)). Then

V̇ = −V 2 + U ⇒ V̇ ≤ −V 2 + (‖u0‖L∞ + t‖u0‖L2)

There is T <∞ such that V (t) → −∞ as t ↑ T .



Numerical simulation

Using the pseudospectral method, we solve

∂

∂t
ûk = − i

k
ûk − ik

2
F
[

(

F−1
û
)2
]

k
, k 6= 0, t > 0.

Consider the 1-periodic initial data

u0(x) = a cos(2πx) + b sin(4πx),



Evolution of the cosine initial data
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Figure : Solution surface u(t, x) (left) and infx∈S ux(t, x) versus t (right) for a = 0.005,
b = 0 (top) and a = 0.05, b = 0 (bottom). C ≈ −1.009 and B ≈ 3.213.



Summary

For both the short-pulse and reduced Ostrovsky equations, we have ...

... found sufficient conditions for global well-posedness for small data.

... found sufficient conditions for wave breaking for large initial data.

... illustrated both global existence and wave breaking numerically.

For the reduced Ostrovsky equation, there is a sharp criterion on the initial

data for the global solutions to exist.

It is not clear if a similar sharp criterion on the initial data exists for the

short-pulse equation.
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