Global existence and wave breaking
 in Burgers-type equations with low-frequency dispersion

Dmitry Pelinovsky
Department of Mathematics, McMaster University, Hamilton, Ontario, Canada
University College London, 26 May 2015

References:
Yu. Liu, D.P., A. Sakovich, Dynamics of PDE 6, 291-310 (2009)
Yu. Liu, D.P., A. Sakovich, SIAM J. Math. Anal. 42, 1967-1985 (2010)
D.P., A. Sakovich, Communications in PDE 35, 613-629 (2010)
R. Grimshaw, D.P., DCDS A 34, 557-566 (2014)

Ostrovsky equation for rotating fluid

The Ostrovsky equation is a model for small-amplitude long waves in a rotating fluid of a finite depth [Ostrovsky, 1978]:

$$
\left(u_{t}+u u_{x}-\beta u_{x x x}\right)_{x}=\gamma u
$$

where β and γ are real coefficients.

When $\beta=0$ and $\gamma=1$, the Ostrovsky equation is

$$
\left(u_{t}+u u_{x}\right)_{x}=u
$$

and is known under the names of

- the short-wave equation [Hunter, 1990];
- Ostrovsky-Hunter equation [Boyd, 2005];
- reduced Ostrovsky equation [Stepanyants, 2006];
- the Vakhnenko equation [Vakhnenko \& Parkes, 2002].

Short-pulse equation

The short-pulse equation is a model for propagation of ultra-short pulses with few cycles on the pulse scale [Schäfer, Wayne 2004]:

$$
u_{x t}=u+\frac{1}{6}\left(u^{3}\right)_{x x}
$$

where all coefficients are normalized thanks to the scaling invariance.
The short-pulse equation

- replaces the nonlinear Schrödinger equation for short wave packets
- features exact solutions for modulated pulses
- enjoys inverse scattering and an infinite set of conserved quantities

Well-posedness results

- T. Schafer and C.E. Wayne (2004) proved local existence in $H^{2}(\mathbb{R})$.
- A. Stefanov et al. (2010) considered a family of the generalized short-pulse equations

$$
u_{x t}=u+\left(u^{p}\right)_{x x}
$$

and proved scattering to zero for small initial data if $p \geq 4$.

- Y. Liu et al. $(2009,2010)$ proved global existence for small initial data and wave breaking for large initial data if $p=3$.
- Y. Liu et al. (2010) proved wave breaking for sufficiently large initial data if $p=2$ but found no proof of global existence for small initial data.
- T. Johnson et al. (2012) suggested a sharp criterion that distinguished between global existence and wave breaking for $p=2$.
- R. Grimshaw, D.P. (2014) proved global existence for small initial data.

Integrability of the short-pulse equation

The short-pulse equation is

$$
u_{x t}=u+\frac{1}{6}\left(u^{3}\right)_{x x}, \quad x \in \mathbb{R}, \quad t \in[0, T]
$$

Integrability of the short-pulse equation

The short-pulse equation is

$$
u_{x t}=u+\frac{1}{6}\left(u^{3}\right)_{x x}, \quad x \in \mathbb{R}, \quad t \in[0, T]
$$

Let $x=x(y, t)$ satisfy

$$
\left\{\begin{aligned}
x_{y} & =\cos w \\
x_{t} & =-\frac{1}{2} w_{t}^{2}
\end{aligned}\right.
$$

If $w=w(y, t)$ satisfies the sine-Gordon equation in characteristic coordinates [A. Sakovich, S. Sakovich (2006)]

$$
w_{y t}=\sin (w), \quad y \in \mathbb{R}, \quad t \in[0, T]
$$

then $u(x, t)=w_{t}(y(x, t), t)$ solves the short-pulse equation.
The map $\mathbb{R} \ni y \rightarrow x \in \mathbb{R}$ is invertible for $t \in[0, T]$, if

$$
\cos (w)>0 \quad \text { or } \quad\|w\|_{L^{\infty}}<\frac{\pi}{2}
$$

Solutions of the short-pulse equation

A kink of the sine-Gordon equation gives a loop solution of the short-pulse equation:

$$
\left\{\begin{array}{l}
u=2 \operatorname{sech}(y+t) \\
x=y-2 \tanh (y+t)
\end{array}\right.
$$

Figure : The loop solution $u(x, t)$ to the short-pulse equation

Solutions of the short-pulse equation

A breather of the sine-Gordon equation gives a pulse solution of the short-pulse equation:

$$
\left\{\begin{array}{l}
u(y, t)=4 m n \frac{m \sin \psi \sinh \phi+n \cos \psi \cosh \phi}{m^{2} \sin ^{2} \psi+n^{2} \cosh ^{2} \phi}=u\left(y-\frac{\pi}{m}, t+\frac{\pi}{m}\right) \\
x(y, t)=y+2 m n \frac{m \sin 2 \psi-n \sinh 2 \phi}{m^{2} \sin ^{2} \psi+n^{2} \cosh ^{2} \phi}=x\left(y-\frac{\pi}{m}, t+\frac{\pi}{m}\right)+\frac{\pi}{m}
\end{array}\right.
$$

where

$$
\phi=m(y+t), \quad \psi=n(y-t), \quad n=\sqrt{1-m^{2}}
$$

and $m \in \mathbb{R}$ is a free parameter.

Figure : The pulse solution to the short-pulse equation with $m=0.25$

Local well-posedness of the short-pulse equation

Theorem (Schäfer \& Wayne, 2004)

Let $u_{0} \in H^{2}$. There exists a maximal existence time $T=T\left(u_{0}\right)>0$ and a unique solution to the short-pulse equation

$$
u(t) \in C\left([0, T), H^{2}\right) \cap C^{1}\left([0, T), H^{1}\right)
$$

that satisfies $u(0)=u_{0}$ and depends continuously on u_{0}.

Remarks:

- The proof can be extended to any $s>\frac{3}{2}$ (Stefanov et al, 2010).
- There is a constraint on solutions of the short-pulse equation

$$
\int_{\mathbb{R}} u(x, t) d x=0, \quad t>0 .
$$

A better space is $H^{s} \cap \dot{H}^{-1}$ for $s>\frac{3}{2}$.

Conserved quantities of the short-pulse equation

A bi-infinite hierarchy of conserved quantities of the short-pulse equation was found in Brunelli [J.Math.Phys. 46, 123507 (2005)]:

$$
\begin{aligned}
E_{-1} & =\int_{\mathbb{R}}\left(\frac{1}{24} u^{4}-\frac{1}{2}\left(\partial_{x}^{-1} u\right)^{2}\right) d x \\
E_{0} & =\int_{\mathbb{R}} u^{2} d x \\
E_{1} & =\int_{\mathbb{R}} \frac{u_{x}^{2}}{1+\sqrt{1+u_{x}^{2}}} d x \\
E_{2} & =\int_{\mathbb{R}} \frac{u_{x x}^{2}}{\left(1+u_{x}^{2}\right)^{5 / 2}} d x
\end{aligned}
$$

Conserved quantities $E_{-1}, E_{0}, E_{1}, E_{2}$ are defined in the energy space $H^{2}(\mathbb{R}) \cap \dot{H}^{-1}(\mathbb{R})$.

Global well-posedness of the short-pulse equation

Theorem (P. \& Sakovich, 2010)

Let $u_{0} \in H^{2}$ such that $\left\|u_{0}^{\prime}\right\|_{L^{2}}^{2}+\left\|u_{0}^{\prime \prime}\right\|_{L^{2}}^{2}<1$. Then the short-pulse equation admits a unique solution $u(t) \in C\left(\mathbb{R}, H^{2}\right)$ with $u(0)=u_{0}$.

The constant values of E_{0}, E_{1} and E_{2} are bounded by $\left\|u_{0}\right\|_{H^{2}}$ as follows:

$$
\begin{aligned}
E_{0} & =\int_{\mathbb{R}} u^{2} d x=\left\|u_{0}\right\|_{L^{2}}^{2} \\
E_{1} & =\int_{\mathbb{R}} \frac{u_{x}^{2}}{1+\sqrt{1+u_{x}^{2}}} d x \leq \frac{1}{2}\left\|u_{0}^{\prime}\right\|_{L^{2}}^{2}, \\
E_{2} & =\int_{\mathbb{R}} \frac{u_{x x}^{2}}{\left(1+u_{x}^{2}\right)^{5 / 2}} d x \leq\left\|u_{0}^{\prime \prime}\right\|_{L^{2}}^{2} .
\end{aligned}
$$

so that $2 E_{1}+E_{2}<1$.
The local existence time $T>0$ is inverse proportional to the norm $\left\|u_{0}\right\|_{H^{2}}$ of the initial data u_{0}. To extend T to ∞, we need to control the norm $\|u(t)\|_{H^{2}}$ by a T-independent constant on $[0, T]$.

Sketch of the proof

- Let $q(x, t)=\frac{u_{x}}{\sqrt{1+u_{x}^{2}}}$. Then, we obtain

$$
\begin{aligned}
\|q\|_{L^{2}}^{2} & \leq \int_{\mathbb{R}} \frac{u_{x}^{2}}{1+\sqrt{1+u_{x}^{2}}} \frac{1+\sqrt{1+u_{x}^{2}}}{1+u_{x}^{2}} d x \leq 2 E_{1}, \\
\left\|\partial_{x} q\right\|_{L^{2}}^{2} & \leq \int_{\mathbb{R}} \sqrt{1+u_{x}^{2}}\left[\partial_{x} \frac{u_{x}}{\sqrt{1+u_{x}^{2}}}\right]^{2} d x=E_{2},
\end{aligned}
$$

hence, $\|q(t)\|_{H^{1}} \leq \sqrt{2 E_{1}+E_{2}}<1, t \in[0, T]$.

- Thanks to Sobolev's embedding $\|q\|_{L^{\infty}} \leq \frac{1}{\sqrt{2}}\|q\|_{H^{1}}<1$, the inverse transformation $u_{x}=\frac{q}{\sqrt{1-q^{2}}}$ satisfies the bound

$$
\left\|u_{x}\right\|_{H^{1}} \leq \frac{\|q\|_{H^{1}}}{\sqrt{1-\|q\|_{H^{1}}^{2}}}
$$

or equivalently

$$
\|u(t)\|_{H^{2}} \leq\left(E_{0}+\frac{2 E_{1}+E_{2}}{1-\left(2 E_{1}+E_{2}\right)}\right)^{1 / 2}, \quad t \in[0, T] .
$$

Sharper condition for global well-posedness

Corollary

Let $u_{0} \in H^{2}$ such that $2 \sqrt{2 E_{1} E_{2}}<1$. Then the short-pulse equation admits a unique solution $u(t) \in C\left(\mathbb{R}, H^{2}\right)$ with $u(0)=u_{0}$.

Let $\alpha>0$ be arbitrary. If $u(x, t)$ is a solution of the short-pulse equation, then $\tilde{u}(\tilde{x}, \tilde{t})$ is also a solution of the same equation with

$$
\tilde{x}=\alpha x, \quad \tilde{t}=\alpha^{-1} t, \quad \tilde{u}(\tilde{x}, \tilde{t})=\alpha u(x, t)
$$

The scaling invariance yields transformation $\tilde{E}_{1}=\alpha E_{1}$ and $\tilde{E}_{2}=\alpha^{-1} E_{2}$. For a given $u_{0} \in H^{2}$, a family of initial data $\tilde{u}_{0} \in H^{2}$ satisfies

$$
\phi(\alpha)=2 \tilde{E}_{1}+\tilde{E}_{2}=2 \alpha E_{1}+\alpha^{-1} E_{2} \geq 2 \sqrt{2 E_{1} E_{2}}, \quad \forall \alpha>0
$$

If $2 \sqrt{2 E_{1} E_{2}}<1$, there exists α such that \tilde{u} is defined for any $\tilde{t} \in \mathbb{R}$.

Criterion for wave breaking

Consider the Cauchy problem for the inviscid Burgers equation

$$
\left\{\begin{array}{l}
u_{t}=\frac{1}{2} u^{2} u_{x}, \\
u(x, 0)=u_{0}(x),
\end{array} \quad x \in \mathbb{R}, t \geq 0 .\right.
$$

The Cauchy problem can be solved by the method of characteristics. The finite-time blow-up occurs for any $u_{0}(x) \in C^{1}(\mathbb{R})$ if there is a point $x_{0} \in \mathbb{R}$ such that $u_{0}\left(x_{0}\right) u_{0}^{\prime}\left(x_{0}\right)>0$. The blow-up time is

$$
T=\inf _{\xi \in \mathbb{R}}\left\{\frac{1}{u_{0}(\xi) u_{0}^{\prime}(\xi)}: \quad u_{0}(\xi) u_{0}^{\prime}(\xi)>0\right\} .
$$

Criterion for wave breaking

Consider the Cauchy problem for the inviscid Burgers equation

$$
\left\{\begin{array}{l}
u_{t}=\frac{1}{2} u^{2} u_{x}, \\
u(x, 0)=u_{0}(x),
\end{array} \quad x \in \mathbb{R}, t \geq 0 .\right.
$$

The Cauchy problem can be solved by the method of characteristics. The finite-time blow-up occurs for any $u_{0}(x) \in C^{1}(\mathbb{R})$ if there is a point $x_{0} \in \mathbb{R}$ such that $u_{0}\left(x_{0}\right) u_{0}^{\prime}\left(x_{0}\right)>0$. The blow-up time is

$$
T=\inf _{\xi \in \mathbb{R}}\left\{\frac{1}{u_{0}(\xi) u_{0}^{\prime}(\xi)}: \quad u_{0}(\xi) u_{0}^{\prime}(\xi)>0\right\} .
$$

Lemma

Let $u_{0} \in H^{2}(\mathbb{R})$ and $u(t)$ be a local solution of the Cauchy problem for the short-pulse equation. The solution blows up in a finite time $T<\infty$ in the sense $\lim _{t \uparrow T}\|u(\cdot, t)\|_{H^{2}}=\infty$ if and only if

$$
\lim _{t \uparrow T} \sup _{x \in \mathbb{R}} u(x, t) u_{x}(x, t)=+\infty
$$

Short-pulse equation in a periodic domain

The short-pulse equation on the unit circle \mathbb{S} is given by

$$
\left\{\begin{array}{l}
u_{t}=\frac{1}{2} u^{2} u_{x}+\partial_{x}^{-1} u, \\
u(x, 0)=u_{0}(x),
\end{array} \quad x \in \mathbb{S}, \quad t \geq 0,\right.
$$

where $\partial_{x}^{-1} u$ is the mean-zero anti-derivative,

$$
\partial_{x}^{-1} u=\int_{0}^{x} u\left(x^{\prime}, t\right) d x^{\prime}-\int_{\mathbb{S}} \int_{0}^{x} u\left(x^{\prime}, t\right) d x^{\prime} d x .
$$

- The assumption $\int_{\mathbb{S}} u_{0}(x) d x=0$ is necessary for existence.
- The following quantities are constant as long as the solution exists:

$$
E_{0}=\int_{\mathbb{S}} u^{2} d x, \quad E_{1}=\int_{\mathbb{S}} \sqrt{1+u_{x}^{2}} d x
$$

Method of characteristics

Let $\xi \in \mathbb{S}, t \in[0, T)$, and denote

$$
x=X(\xi, t), \quad u(x, t)=U(\xi, t), \quad \partial_{x}^{-1} u(x, t)=G(\xi, t)
$$

At characteristics $x=X(\xi, t)$, we obtain

$$
\left\{\begin{array} { l }
{ \dot { X } (t) = - \frac { 1 } { 2 } U ^ { 2 } , } \\
{ X (0) = \xi , }
\end{array} \quad \left\{\begin{array}{l}
\dot{U}(t)=G, \\
U(0)=u_{0}(\xi),
\end{array}\right.\right.
$$

Method of characteristics

Let $\xi \in \mathbb{S}, t \in[0, T)$, and denote

$$
x=X(\xi, t), \quad u(x, t)=U(\xi, t), \quad \partial_{x}^{-1} u(x, t)=G(\xi, t) .
$$

At characteristics $x=X(\xi, t)$, we obtain

$$
\left\{\begin{array} { l }
{ \dot { X } (t) = - \frac { 1 } { 2 } U ^ { 2 } , } \\
{ X (0) = \xi , }
\end{array} \quad \left\{\begin{array}{l}
\dot{U}(t)=G, \\
U(0)=u_{0}(\xi),
\end{array}\right.\right.
$$

Both U and G are bounded on the smooth solutions:

$$
|u(x, t)| \leq \int_{\mathbb{S}}\left|u_{x}(x, t)\right| d x \leq E_{1}
$$

and

$$
\left|\partial_{x}^{-1} u(x, t)\right| \leq \int_{\mathbb{S}}|u(x, t)| d x \leq \sqrt{E_{0}} .
$$

Sufficient condition for wave breaking

Theorem (Liu, P. \& Sakovich, 2009)

Let $u_{0} \in H^{2}(\mathbb{S})$ and $\int_{\mathbb{S}} u_{0}(x) d x=0$. Assume that there exists $x_{0} \in \mathbb{R}$ such that $u_{0}\left(x_{0}\right) u_{0}^{\prime}\left(x_{0}\right)>0$ and

$$
\begin{array}{ll}
\text { either } & \\
& \left|u_{0}^{\prime}\left(x_{0}\right)\right|>\left(\frac{E_{1}^{2}}{4 E_{0}^{1 / 2}}\right)^{1 / 3}, \\
& \left|u_{0}\left(x_{0}\right) \| u_{0}^{\prime}\left(x_{0}\right)\right|^{2}>E_{1}+\left(2 E_{0}^{1 / 2}\left|u_{0}^{\prime}\left(x_{0}\right)\right|^{3}-\frac{1}{2} E_{1}^{2}\right)^{1 / 2}, \\
\text { or } & \\
& \left|u_{0}^{\prime}\left(x_{0}\right)\right| \leq\left(\frac{E_{1}^{2}}{4 E_{0}^{1 / 2}}\right)^{1 / 3}, \quad\left|u_{0}\left(x_{0}\right) \| u_{0}^{\prime}\left(x_{0}\right)\right|^{2}>E_{1}
\end{array}
$$

Then there exists a finite time $T \in(0, \infty)$ such that the solution $u(t) \in C\left([0, T), H^{2}(\mathbb{S})\right)$ blows up with the property

$$
\lim _{t \uparrow T} \sup _{x \in \mathbb{S}} u(x, t) u_{x}(x, t)=+\infty, \quad \text { while } \quad \lim _{t \uparrow T}\|u(\cdot, t)\|_{L^{\infty}} \leq E_{1}
$$

Sketch of the proof

Let $V(\xi, t)=u_{x}(X(\xi, t), t)$ and $W(\xi, t)=U(\xi, t) V(\xi, t)$. Then

$$
\begin{cases}\dot{V} & =V W+U \\ \dot{W} & =W^{2}+V G+U^{2} .\end{cases}
$$

Under the conditions of the theorem, there exists $\xi_{0} \in \mathbb{S}$ such that $V\left(\xi_{0}, t\right)$ and $W\left(\xi_{0}, t\right)$ satisfy the apriori estimates

$$
\left\{\begin{array}{l}
\dot{V} \geq V W-E_{1} \\
\dot{W} \geq W^{2}-V \sqrt{E_{0}}
\end{array}\right.
$$

By comparison theorem, $V\left(\xi_{0}, t\right) \geq \mathbf{V}\left(\xi_{0}, t\right)$ and $W\left(\xi_{0}, t\right) \geq \mathbf{W}\left(\xi_{0}, t\right)$, where the lower solution (\mathbf{V}, \mathbf{W}) diverges to infinity in a finite time.

Criteria of well-posedness and wave breaking

Consider Gaussian initial data

$$
u_{0}(x)=a\left(1-2 b x^{2}\right) e^{-b x^{2}}, \quad x \in \mathbb{R}
$$

where (a, b) are arbitrary and $\int_{\mathbb{R}} u_{0}(x) d x=0$ is satisfied.

Global solutions exist in the red region and wave breaking occurs in the blue region.

Numerical simulation

Using the pseudospectral method, we solve

$$
\frac{\partial}{\partial t} \hat{u}_{k}=-\frac{i}{k} \hat{u}_{k}+\frac{i k}{6} \mathcal{F}\left[\left(\mathcal{F}^{-1} \hat{u}\right)^{3}\right]_{k}, \quad k \neq 0, \quad t>0 .
$$

Consider the 1-periodic initial data

$$
u_{0}(x)=a \cos (2 \pi x)
$$

- Criterion for wave breaking: $a>1.053$.
- Criterion for global solutions: $a<0.0354$.

Evolution of the cosine initial data

Solution surface $u(x, t)$ (left) and the supremum norm $W(t)$ (right) for $a=0.2$ (top) and $a=0.5$ (bottom).

Local well-posedness of the reduced Ostrovsky equation

Theorem (Stefanov et al., 2010)

Let $u_{0} \in H^{s}, s>\frac{3}{2}$. There exists a maximal existence time $T=T\left(u_{0}\right)>0$ and a unique solution to the reduced Ostrovsky equation $\left(u_{t}+u u_{x}\right)_{x}=u$,

$$
u(t) \in C\left([0, T), H^{s}\right) \cap C^{1}\left([0, T), H^{s-1}\right)
$$

that satisfies $u(0)=u_{0}$ and depends continuously on u_{0}.

Integrability is based on the reduction to the Vakhnenko equation (Vakhnenko, 1992), which is a sort of Hirota-Satsuma equation with a reversed role of space-time variables. The conserved quantities are:

$$
\begin{aligned}
E_{-1} & =\int_{\mathbb{R}}\left(\frac{1}{3} u^{3}+\left(\partial_{x}^{-1} u\right)^{2}\right) d x \\
E_{0} & =\int_{\mathbb{R}} u^{2} d x
\end{aligned}
$$

Conserved quantities are not helpful to control solution in $H^{s}, s>\frac{3}{2}$.

Global well-posedness of the reduced Ostrovsky equation

Theorem (Grimshaw \& P., 2014)

Let $u_{0} \in H^{3}$ such that $1-3 u_{0}^{\prime \prime}(x)>0$ for all x. Then the reduced Ostrovsky equation admits a unique solution $u(t) \in C\left(\mathbb{R}, H^{3}\right)$ with $u(0)=u_{0}$.

This result is based on the number of preliminary works:

- Hone \& Wang (2003) obtained Lax pair

$$
\left\{\begin{array}{c}
3 \lambda \psi_{x x x}+\left(1-3 u_{x x}\right) \psi=0 \\
\psi_{t}+\lambda \psi_{x x}+u \psi_{x}-u_{x} \psi=0
\end{array}\right.
$$

- Kraenkel et al. (2011) showed equivalence with the Bullough-Dodd (Tzitzeica) equation

$$
\frac{\partial^{2} V}{\partial t \partial z}=e^{-2 V}-e^{V}
$$

- Grimshaw et al. (2013) suggested the relevance of $1-3 u_{0}^{\prime \prime}(x)$ from asymptotic and numerical analysis.

Conserved quantities for the reduced Ostrovsky equation

Brunelli \& Sakovich (2013) found bi-infinite sequence of conserved quantities for the reduced Ostrovsky equation:

$$
\begin{aligned}
E_{-1} & =\int_{\mathbb{R}}\left(\frac{1}{3} u^{3}+\left(\partial_{x}^{-1} u\right)^{2}\right) d x \\
E_{0} & =\int_{\mathbb{R}} u^{2} d x \\
E_{1} & =\int_{\mathbb{R}}\left[\left(1-3 u_{x x}\right)^{1 / 3}-1\right] d x \\
E_{2} & =\int_{\mathbb{R}} \frac{\left(u_{x x x}\right)^{2}}{\left(1-3 u_{x x}\right)^{7 / 3}} d x
\end{aligned}
$$

However, the quantity $1-3 u_{x x}$ needs to be controlled over the time span.

Characteristic variables for the reduced Ostrovsky equation

Starting with the reduced Ostrovsky equation

$$
\left(u_{t}+u u_{x}\right)_{x}=u, \quad x \in \mathbb{R}, \quad t \in[0, T] .
$$

Let $x=x(y, t)$ satisfy $x=y+\int_{0}^{t} U\left(y, t^{\prime}\right) d t^{\prime}$ with $u(x, t)=U(y, t)$. The transformation $y \rightarrow x$ is invertible if

$$
\phi(y, t)=1+\int_{0}^{t} U_{y}\left(y, t^{\prime}\right) d t^{\prime} \neq 0 .
$$

Characteristic variables for the reduced Ostrovsky equation

Starting with the reduced Ostrovsky equation

$$
\left(u_{t}+u u_{x}\right)_{x}=u, \quad x \in \mathbb{R}, \quad t \in[0, T] .
$$

Let $x=x(y, t)$ satisfy $x=y+\int_{0}^{t} U\left(y, t^{\prime}\right) d t^{\prime}$ with $u(x, t)=U(y, t)$. The transformation $y \rightarrow x$ is invertible if

$$
\phi(y, t)=1+\int_{0}^{t} U_{y}\left(y, t^{\prime}\right) d t^{\prime} \neq 0
$$

Let us introduce $f(x, t)=\left(1-3 u_{x x}\right)^{1 / 3}=F(y, t)$. Then,

$$
f_{t}+(u f)_{x}=0 \quad(F \phi)_{t}=0
$$

so that $F(y, t) \phi(y, t)=F_{0}(y)$.
The reduced Ostrovsky equation is equivalent to the evolution equation

$$
\frac{\partial^{2}}{\partial t \partial y} \log (F)=\frac{1}{3} F_{0}(y)\left(F^{2}-F^{-1}\right)
$$

Sketch of the proof

- If $1-3 u_{0}^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$, then $F_{0}(y)>0$. We introduce

$$
z:=-\frac{1}{3} \int_{0}^{y} F_{0}\left(y^{\prime}\right) d y^{\prime}, \quad F(y, t):=e^{-V(z, t)}
$$

and obtain the Tzitzéica equation

$$
\frac{\partial^{2} V}{\partial t \partial z}=e^{-2 V}-e^{V}
$$

Sketch of the proof

- If $1-3 u_{0}^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$, then $F_{0}(y)>0$. We introduce

$$
z:=-\frac{1}{3} \int_{0}^{y} F_{0}\left(y^{\prime}\right) d y^{\prime}, \quad F(y, t):=e^{-V(z, t)},
$$

and obtain the Tzitzéica equation

$$
\frac{\partial^{2} V}{\partial t \partial z}=e^{-2 V}-e^{V}
$$

- There exists a unique local solution of the Tzitzéica equation in class $V \in C\left([0, T], H^{1}(\mathbb{R})\right)$ for some $T>0$ such that $V(z, 0)=V_{0}(z)$:

$$
V(z, t)=-\frac{1}{3} \log \left(1-3 u_{x x}(x, t)\right)
$$

Sketch of the proof

- If $1-3 u_{0}^{\prime \prime}(x)>0$ for all $x \in \mathbb{R}$, then $F_{0}(y)>0$. We introduce

$$
z:=-\frac{1}{3} \int_{0}^{y} F_{0}\left(y^{\prime}\right) d y^{\prime}, \quad F(y, t):=e^{-V(z, t)},
$$

and obtain the Tzitzéica equation

$$
\frac{\partial^{2} V}{\partial t \partial z}=e^{-2 V}-e^{V}
$$

- There exists a unique local solution of the Tzitzéica equation in class $V \in C\left([0, T], H^{1}(\mathbb{R})\right)$ for some $T>0$ such that $V(z, 0)=V_{0}(z)$:

$$
V(z, t)=-\frac{1}{3} \log \left(1-3 u_{x x}(x, t)\right)
$$

- The solution is extended globally in class $V \in C\left(\mathbb{R}, H^{1}(\mathbb{R})\right)$ thanks to the conserved quantities

$$
Q_{1}=\int_{\mathbb{R}}\left(2 e^{V}+e^{-2 V}-3\right) d z, \quad Q_{2}=\int_{\mathbb{R}}\left(\frac{\partial V}{\partial z}\right)^{2} d z
$$

- This yields a global solution to the reduced Ostrovsky equation in class $u \in C\left(\mathbb{R}, H^{3}(\mathbb{R})\right)$.

The reduced Ostrovsky equation

Consider the Cauchy problem on a circle \mathbb{S} of unit length:

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=\partial_{x}^{-1} u, \quad t>0 \\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

The inviscid Burgers equation $u_{t}+u u_{x}=0$ develops wave breaking in a finite time for any initial data $u(0, x)=u_{0}(x)$ if $u_{0}(x) \in C^{1}$ and there is a point x_{0} such that $u_{0}^{\prime}\left(x_{0}\right)<0$. The blow-up time is computed by the method of characteristics:

$$
T=\inf _{\xi}\left\{\frac{1}{\left|u_{0}^{\prime}(\xi)\right|}: \quad u_{0}^{\prime}(\xi)<0\right\}
$$

Lemma

Let $u_{0} \in H^{2}(\mathbb{S})$ and $u(t)$ be a local solution of the Cauchy problem for the reduced Ostrovsky equation. The solution blows up in a finite time $T<\infty$ in the sense $\lim _{t \uparrow T}\|u(\cdot, t)\|_{H^{2}}=\infty$ if and only if

$$
\lim _{t \uparrow T} \inf _{x} u_{x}(t, x)=-\infty, \quad \text { while } \quad \lim _{t \uparrow T} \sup _{x}|u(t, x)|<\infty .
$$

Sufficient results for wave breaking

Theorem (Hunter, 1990)

Let $u_{0}(x) \in C^{1}(\mathbb{S})$, where \mathbb{S} is a circle of unit length, and define

$$
\inf _{x \in \mathbb{S}} u_{0}^{\prime}(x)=-m \quad \text { and } \quad \sup _{x \in \mathbb{S}}\left|u_{0}(x)\right|=M
$$

If $m^{3}>4 M(4+m)$, a smooth solution $u(t, x)$ breaks down at a finite time.

Theorem (Liu, P. \& Sakovich, 2010)

Assume that $u_{0}(x) \in H^{s}(\mathbb{S}), s>\frac{3}{2}$ and $\int_{\mathbb{S}} u_{0}(x) d x=0$. If either

$$
\begin{equation*}
\int_{\mathbb{S}}\left(u_{0}^{\prime}(x)\right)^{3} d x<-\left(\frac{3}{2}\left\|u_{0}\right\|_{L^{2}}\right)^{3 / 2} \tag{1}
\end{equation*}
$$

or there is a $x_{0} \in \mathbb{S}$ such that

$$
\begin{equation*}
u_{0}^{\prime}\left(x_{0}\right)<-1\left(\left\|u_{0}\right\|_{L^{\infty}}+T_{1}\left\|u_{0}\right\|_{L^{2}}\right)^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

then the solution $u(t, x)$ of the Cauchy problem blows up in a finite time.

Proof of the sufficient condition (1)

Direct computation gives

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathbb{S}} u_{x}^{3} d x & =3 \int_{\mathbb{S}} u_{x}^{2}\left(-u_{x}^{2}-u u_{x x}+u\right) d x \\
& =-2 \int_{\mathbb{S}} u_{x}^{4} d x+3 \int_{\mathbb{S}} u u_{x}^{2} d x \\
& \leq-2\left\|u_{x}\right\|_{L^{4}}^{4}+3\|u\|_{L^{2}}\left\|u_{x}\right\|_{L^{4}}^{2}
\end{aligned}
$$

By Hölder's inequality, we have

$$
|V(t)| \leq\left\|u_{x}\right\|_{L^{3}}^{3} \leq\left\|u_{x}\right\|_{L^{4}}^{3}, \quad V(t)=\int_{\mathbb{S}} u_{x}^{3}(t, x) d x<0
$$

Let $Q_{0}=\|u\|_{L^{2}}^{2}=\left\|u_{0}\right\|_{L^{2}}^{2}$ and $V(0)<-\left(\frac{3}{2} Q_{0}\right)^{\frac{3}{2}}$. Then,

$$
\frac{d V}{d t} \leq-2\left(|V|^{\frac{2}{3}}-\frac{3 Q_{0}}{4}\right)^{2}+\frac{9 Q_{0}^{2}}{8}
$$

There is $T<\infty$ such that $V(t) \rightarrow-\infty$ as $t \uparrow T$.

Proof of the sufficient condition (2)

Let $\xi \in \mathbb{S}, t \in[0, T)$, and denote

$$
x=X(\xi, t), \quad u(x, t)=U(\xi, t), \quad \partial_{x}^{-1} u(x, t)=G(\xi, t)
$$

At characteristics $x=X(\xi, t)$, we obtain

$$
\left\{\begin{array} { l }
{ \dot { X } (t) = U , } \\
{ X (0) = \xi , }
\end{array} \quad \left\{\begin{array}{l}
\dot{U}(t)=G \\
U(0)=u_{0}(\xi)
\end{array}\right.\right.
$$

Let $V(\xi, t)=u_{x}(t, X(\xi, t))$. Then

$$
\dot{V}=-V^{2}+U \quad \Rightarrow \quad \dot{V} \leq-V^{2}+\left(\left\|u_{0}\right\|_{L^{\infty}}+t\left\|u_{0}\right\|_{L^{2}}\right)
$$

There is $T<\infty$ such that $V(t) \rightarrow-\infty$ as $t \uparrow T$.

Numerical simulation

Using the pseudospectral method, we solve

$$
\frac{\partial}{\partial t} \hat{t}_{k}=-\frac{i}{k} \hat{u}_{k}-\frac{i k}{2} \mathcal{F}\left[\left(\mathcal{F}^{-1} \hat{u}\right)^{2}\right]_{k}, \quad k \neq 0, \quad t>0
$$

Consider the 1-periodic initial data

$$
u_{0}(x)=a \cos (2 \pi x)+b \sin (4 \pi x)
$$

Evolution of the cosine initial data

Figure : Solution surface $u(t, x)$ (left) and $\inf _{x \in \mathbb{S}} u_{x}(t, x)$ versus t (right) for $a=0.005$, $b=0$ (top) and $a=0.05, b=0$ (bottom). $C \approx-1.009$ and $B \approx 3.213$.

Summary

For both the short-pulse and reduced Ostrovsky equations, we have ...

- ... found sufficient conditions for global well-posedness for small data.
- ... found sufficient conditions for wave breaking for large initial data.
- ... illustrated both global existence and wave breaking numerically.

For the reduced Ostrovsky equation, there is a sharp criterion on the initial data for the global solutions to exist.

It is not clear if a similar sharp criterion on the initial data exists for the short-pulse equation.

