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Background

Traveling waves for the irrotational motion of an incompressible fluid:



Background

Traveling waves for the irrotational motion of an incompressible fluid:

How do the waves break?



Background

Traveling waves for the irrotational motion of an incompressible fluid:

This has a long history starting with Sir George Stokes (1819-1903)



Background

In 1880 Stokes suggested existence of the peaked wave in the family
of smooth traveling waves:

Existence of the peaked wave was proven by Toland (1978) and the
2π/3-peaked singularity was proven by Plotnikov (1982).

More recently, numerical and asymptotic results were developed for
approximation of nearly-peaked periodic waves and their instabilities.
[Dyachenko–Lushnikov–Korotkevich, 2016] [Lushnikov, 2016]
[Dyachenko-Semenova, 23] [Korotkevich-Lushnikov-Semenova-Dyachenko, 23]



Shallow-water models

Shallow water models are derived for long waves of small amplitude

a� h� λ



Shallow-water models

The Korteweg–de Vries (KdV) equation:

ut + ux + uxxx + uux = 0

[Boussinesq, 1872] [Korteweg & de Vries, 1895]



Shallow-water models

The Benjamin–Bona–Mahony (BBM) equation

ut + ux − utxx + uux = 0

[Peregrine, 1966] [Benjamin–Bona–Mahony, 1972]



Shallow-water models

The Camassa–Holm (CH) equation

ut + ux − utxx + 3uux = 2uxuxx + uuxxx

[Camassa & Holm, 1993] [Johnson, 2000] [Constantin & Lannes, 2009]



Shallow-water models

The Ostrovsky equation

ut + ux − utxx + 3uux = ∂−1x u

[Ostrovsky, 1978]



Shallow-water models

Toy model based on holomorphic coordinates

2cut = (c2 − 2u)ux + ∂−1x
[
u+ (ux)2

]
.

[Locke & P, 2024]



Shallow-water models

Toy model based on holomorphic coordinates

2cut = (c2 − 2u)ux + ∂−1x
[
u+ (ux)2

]
.

[Locke & P, 2024] known as the Hunter–Saxton (HS) equation



Existence and stability of traveling (Stokes) waves
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Existence and stability of traveling (Stokes) waves

Standard approach to orbital stability of traveling waves with
translation symmetry related to momentum Q and energy H.

Construct Λ(u) := H(u) + cQ(u), such that TW with profile φ is a
critical point of Λ: Λ′(φ) = 0︸ ︷︷ ︸

TW-eq

Compute the spectrum of the linearized operator L = Λ′′(φ) and
control the negative and zero subspaces of L in L2.

If L has only one negative simple eigenvalue and a simple zero
eigenvalue, then we need to prove that TW is a constrained
minimizer of H under fixed Q, i.e. L|{Q′(φ)}⊥ ≥ 0.

the orbit of TWs {φ(·+ ξ)}ξ∈R is stable in energy space if local
well-posedness has been proven in the energy space.

[A. Geyer & D. P., Stability of nonlinear waves in Hamiltonian systems,
AMS Monographs, 2025]



Existence and stability of traveling (Stokes) waves

Common features of the KdV and BBM equations:

Solutions of the initial-value problem exist in Sobolev space
H1(R)

Energy H and momentum Q are defined in H1(R) and
conserved

Traveling waves u(x, t) = φ(x− ct) have smooth profiles φ in the
admissible range of the wave speed c

TWs are orbitally stable in H1(R) as constrained minimizers of
energy subject to fixed momentum.



Existence and stability of traveling (Stokes) waves

Common features of the CH, Ostrovsky, and HS equations:

Solutions of the initial-value problem exist in H1 ∩W 1,∞

[De Lellis–Kappeler-Topalov (2007)] [Linares–Ponce–Sideris (2019)]

Traveling waves u(x, t) = φ(x− ct) are smooth only in a subset of
parameters and either peaked or cusped outside the subset
[Lennels (2005)] [Geyer–Martins–Natali–P (2022)]

Smooth and peaked waves are constrained minimizers of energy
[Constantin & Strauss, 2000] [Constantin & Molinet, 2001] [Lennels, 2005]

Waves with smooth profiles are stable in the time evolution
[Constantin & Strauss, 2002] [Lennels, 2006]

Waves with peaked profiles are unstable in the time evolution
[Natali & P., 2020] [Madiyeva & P., 2021] [Lafortune & P., 2022]
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Dynamics of the CH equation

The local differential equation

ut − utxx + (b+ 1)uux = b uxuxx + uuxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1

4
ϕ′ ∗

(
bu2 + (3− b)u2x

)
= 0,

where ϕ := 2(1− ∂2x)−1δ = e−|x| is the Green function.



Dynamics of the CH equation

The local differential equation

ut − utxx + (b+ 1)uux = b uxuxx + uuxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1

4
ϕ′ ∗

(
bu2 + (3− b)u2x

)
= 0,

where ϕ := 2(1− ∂2x)−1δ = e−|x| is the Green function.

The time evolution consists of two quadratic parts:

ut + uux +
1

4
ϕ′ ∗

(
bu2 + (3− b)u2x

)
= 0,

with Burgers advection ut + uux = 0 and convolution smoothing.



Dynamics of the CH equation

The local differential equation

ut − utxx + (b+ 1)uux = b uxuxx + uuxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1

4
ϕ′ ∗

(
bu2 + (3− b)u2x

)
= 0,

where ϕ := 2(1− ∂2x)−1δ = e−|x| is the Green function.

Solutions of the Burgers equation ut + uux = 0 with u(0, x) = f(x)
admit wave breaking (gradient blowup) for f ∈W 1,∞(R):

u(t, x) = f(x− tu(t, x)) ⇒ ux =
f ′(x− tu)

1 + tf ′(x− tu)
.



Dynamics of the CH equation

The local differential equation

ut − utxx + (b+ 1)uux = b uxuxx + uuxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1

4
ϕ′ ∗

(
bu2 + (3− b)u2x

)
= 0,

where ϕ := 2(1− ∂2x)−1δ = e−|x| is the Green function.



Dynamics of the CH equation

The local differential equation

ut − utxx + (b+ 1)uux = b uxuxx + uuxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1

4
ϕ′ ∗

(
bu2 + (3− b)u2x

)
= 0,

where ϕ := 2(1− ∂2x)−1δ = e−|x| is the Green function.

We say that the dynamics leads to the wave breaking if

‖u(t, ·)‖L∞ <∞, ‖ux(t, ·)‖L∞ →∞ as t→ T <∞



Dynamics of the CH equation

The local differential equation

ut − utxx + (b+ 1)uux = b uxuxx + uuxxx

can be rewritten in the integral form of the perturbed Burgers equation

ut + uux +
1

4
ϕ′ ∗

(
bu2 + (3− b)u2x

)
= 0,

where ϕ := 2(1− ∂2x)−1δ = e−|x| is the Green function.

The initial-value problem is
locally well-posed in Hs, s > 3/2 [Escher & Yin, 2008; Zhou, 2010]

no continuous dependence in Hs, s ≤ 3/2 (ill-posed)
[Himonas, Grayshan, Holliman (2016)] [Guo, Liu, Molinet, Yin (2018)]

locally well-posed in H1 ∩W 1,∞.
[De Lellis, Kappeler, Topalov (2007)] [Linares, Ponce, Sideris (2019)]



Existence of traveling waves (peakons)

Smooth traveling waves of the form u(x, t) = φ(x− ct) satisfy

−(c− φ)(φ′′′ − φ′) + b(φ′′ − φ)φ′ = 0

Standard integration gives

−(c− φ)(φ′′ − φ) +
1

2
(b− 1)((φ′)2 − φ2) = g = const

Alternative integration, after multiplication by (c− φ)b−1, gives

−(c− φ)b(φ′′ − φ) = a = const.

Both second-order equations are compatible iff

1

2
(b− 1)((φ′)2 − φ2) +

a

(c− φ)b−1
= g



Existence of traveling waves (peakons)

Analyzing on the phase plane (φ, φ′),

1

2
(b− 1)((φ′)2 − φ2) +

a

(c− φ)b−1
= g

e.g., for b = 3 and c = 1, gives smooth solutions for a > 0:
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Existence of traveling waves (peakons)

The existence domain of the smooth periodic solutions of

1

2
(b− 1)((φ′)2 − φ2) +

a

(c− φ)b−1
= g

on the (a, g) plane for fixed c = 1:



Existence of traveling waves (peakons)

For peakons, we should use the weak formulation

ut + uux +
1

4
ϕ′ ∗

(
bu2 + (3− b)u2x

)
= 0.

After the traveling wave reduction u(x, t) = φ(x− ct), we obtain the
integral equation

−cφ+
1

2
φ2 +

1

4
ϕ ∗

(
bφ2 + (3− b)(φ′)2

)
= 0,

where ϕ(x) = e−|x|.

The peakon φ(x) = cϕ(x) is the exact solution of the integral
equation. Note that

c = max
x∈R

φ(x).



Existence of traveling waves (peakons)

Stumpons were also suggested in the past:

u(t, x) = φL(x− ct) =

{
ce−|x−ct|+L, |x− ct| > L,
c, |x− ct| ≤ L.

However, φL does not satisfy the integral equation for every L > 0:

−cφ+
1

2
φ2 +

1

4
ϕ ∗

(
bφ2 + (3− b)(φ′)2

)
= 0.

[Galtung & Grunert (2022)]



Orbital stability of peakons in H1(R): b = 2

For b = 2, the Camassa–Holm equation

ut − utxx + 3uux = 2uxuxx + uuxxx

has the first three conserved quantities

M(u) =

∫
udx, E(u) =

1

2

∫
(u2 + u2x)dx, H(u) =

1

2

∫
(u3 + uu2x) dx.



Orbital stability of peakons in H1(R): b = 2

Theorem (Constantin–Molinet, 2001)
ϕ = e−|x| is a unique (up to translation) minimizer of Hamiltonian
H(u) in H1(R) subject to fixed momentum E(u).

Theorem (Constantin–Strauss, 2000)
For every small ε > 0, if the initial data satisfies

‖u0 − ϕ‖H1 <
(ε

3

)4
,

then the solution satisfies

‖u(t, ·)− ϕ(· − ξ(t))‖H1 < ε, t ∈ (0, T ),

where ξ(t) is a point of maximum for u(t, ·).



Yet, we claim instability of peakons in H1 ∩W 1,∞: b = 2

Consider solutions of the Cauchy problem:{
ut + uux +Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W 1,∞,

Q[u] :=
1

4
ϕ′ ∗

(
u2 +

1

2
u2x

)
.

Theorem (Natali–P., 2020)
For every δ > 0, there exist t0 > 0 and u0 ∈ H1 ∩W 1,∞ satisfying

‖u0 − ϕ‖H1 + ‖u′0 − ϕ′‖L∞ < δ,

s.t. the unique solution u ∈ C([0, T ), H1 ∩W 1,∞) with T > t0 satisfies

‖ux(t0, ·)− ϕ′(· − ξ(t0))‖L∞ > 1,

where ξ(t) is a point of peak of u(t, ·) for t ∈ [0, T ).



Yet, we claim instability of peakons in H1 ∩W 1,∞: b = 2

Consider solutions of the Cauchy problem:{
ut + uux +Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W 1,∞,

Q[u] :=
1

4
ϕ′ ∗

(
u2 +

1

2
u2x

)
.

If u ∈ H1(R) ∩W 1,∞(R), then Q[u] is Lipschitz continuous and
the method of characteristics can be used to analyze dynamics.

If there exists a peak at ξ(t) s.t. u(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}),
then it moves with the local characteristic speed as

dξ

dt
= u(t, ξ(t)), t ∈ (0, T ).



Yet, we claim instability of peakons in H1 ∩W 1,∞: b = 2

Consider solutions of the Cauchy problem:{
ut + uux +Q[u] = 0,
u|t=0 = u0 ∈ H1 ∩W 1,∞,

Q[u] :=
1

4
ϕ′ ∗

(
u2 +

1

2
u2x

)
.

For the peaked traveling wave u(t, x) = φ(x− ct),
ξ′(t) = u(t, ξ(t)) gives c = φ(0) := max

x∈R
φ(x).
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Evolution of a perturbed peakon

Consider a decomposition near a single peakon:

u(t, x) = ϕ(x− t− a(t)) + v(t, x− t− a(t)), t ∈ [0, T ), x ∈ R,

with the peak at ξ(t) = t+ a(t) for v(t, ·) ∈ H1(R) ∩ C1(R\{ξ(t)}).

Then, ξ′(t) = u(t, ξ(t)) yields a′(t) = v(t, 0) and the perturbation v(t, ·)
satisfies

vt = (1− ϕ)vx + ϕ

∫ x

0

v(t, y)dy + (v|x=0 − v)vx −Q[v].

Translational invariance is broked at the peak’s location.



Nonlinear evolution

For the evolution problem:{
vt = (c− ϕ)vx + ϕ

∫ x
0
v(t, y)dy + (v|x=0 − v)vx −Q[v], t ∈ (0, T ),

v|t=0 = v0(x),

we can analyze solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V (t, s).



Nonlinear evolution

For the evolution problem:{
vt = (c− ϕ)vx + ϕ

∫ x
0
v(t, y)dy + (v|x=0 − v)vx −Q[v], t ∈ (0, T ),

v|t=0 = v0(x),

we can analyze solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V (t, s).

The characteristic coordinates X(t, s) satisfies{
dX
dt = ϕ(X)− 1 + v(t,X)− v(t, 0), t ∈ (0, T ),
X|t=0 = s.

Since ϕ is Lipschitz, there exists the unique characteristic function
X(t, s) for each s ∈ R if v(t, ·) remains in H1(R) ∩W 1,∞(R)
The peak location X(t, 0) = 0 is invariant in time.



Nonlinear evolution

For the evolution problem:{
vt = (c− ϕ)vx + ϕ

∫ x
0
v(t, y)dy + (v|x=0 − v)vx −Q[v], t ∈ (0, T ),

v|t=0 = v0(x),

we can analyze solutions with the method of characteristic curves:

x = X(t, s), v(t,X(t, s)) = V (t, s).

From the right side of the peak, V0(t) = v(t, 0), W0(t) = vx(t, 0+):

dW0

dt
= W0 + V0 + V 2

0 −
1

2
W 2

0 − P [v](0), P [v] := ϕ ∗
(
v2 +

1

2
v2x

)
.

We need to show that W0(t) grows.



Nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]
If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.



Nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]
If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

To show instability, we use eq. on the right side of the peak:

dW0

dt
= W0 + V0 + V 2

0 −
1

2
W 2

0 − P [v](0)

and since P [v] > 0, we have

dW0

dt
≤W0 + Cε ⇒ W0(t) ≤ [W0(0) + Cε] et



Nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]
If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

If W0(0) = −2Cε, then

W0(t) ≤ −Cεet,

hence |W0(t0)| ≥ 1 for t0 := − log(Cε).



Nonlinear instability

From the orbital stability in H1(R) [A. Constantin, W. Strauss (2000)]
If ‖v0‖H1 < (ε/3)4, then

|V0(t)| ≤ ‖v(t, ·)‖L∞ ≤ 1√
2
‖v(t, ·)‖H1 < ε.

If W0(0) = −2Cε, then

W0(t) ≤ −Cεet,

hence |W0(t0)| ≥ 1 for t0 := − log(Cε).

The initial constraint ‖v0‖L∞ + ‖v′0‖L∞ < δ, is satisfied
if ∀δ > 0, ∃ε > 0 such that (ε

3

)4
+ 2Cε < δ.



Linear instability

For the linearized equation vt = (1− ϕ)vx + ϕ

∫ x

0

v(t, y)dy , we can

obtain exact unstable solutions (Madiyeva & P, 2021) satisfying

C−e
t ≤ ‖vx(t, ·)‖L∞(0,∞) ≤ C+e

t
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Figure 1: Perturbation v(t, x) versus x for t = 0, 1, 2, 4 with v(0, x) = sin(x).



Spectral instability of peakons

For the b-CH equation, the linearized equation is well-posed in
H1(R) ∩W 1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1

2
(b− 3)ϕ ∗ (ϕ′v)− (2b− 3)ϕ′ ∗ (ϕv) ,



Spectral instability of peakons

For the b-CH equation, the linearized equation is well-posed in
H1(R) ∩W 1,∞(R):

vt = (1− ϕ)vx + (b− 2)(v|x=0 − v)ϕ′

+
1

2
(b− 3)ϕ ∗ (ϕ′v)− (2b− 3)ϕ′ ∗ (ϕv) ,

The linearized operator is

L = (1− ϕ)∂x − (b− 2)ϕ′ +K,

where K : L2(R)→ L2(R) is a compact (Hilbert–Schmidt) operator.
Since ϕ ∈ H1(R) ∩W 1,∞(R), the natural domain of L in L2(R) is

Dom(L) =
{
v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)

}
.



Spectrum of a linear operator

Theorem (S. Lafortune–D. P, 2022)
The spectrum of L with Dom(L) ⊂ L2(R)

σ(L) =

{
λ ∈ C : |Re(λ)| ≤

∣∣∣∣52 − b
∣∣∣∣} .

Moreover,
σp(L) is located for 0 < |Re(λ)| < 5

2 − b if b < 5
2

σr(L) is located for 0 < |Re(λ)| < b− 5
2 if b > 5

2

σc(L) is located for Re(λ) = 0 and Re(λ) = ±
∣∣ 5
2 − b

∣∣.
⇒ the peakon is linearly unstable in Dom(L) for every b 6= 5

2 .



Spectrum of a linear operator

The width of the strip is |b− 5
2 | in L

2(R). If the operator L is defined in
Hs(R), the width is decreasing for higher s ≥ 0.
[S. Charalampidis, R. Parker, P. Kevrekidis, S. Lafortune, (2023)]

First results with instability in the vertical strip were derived for Euler
flows [R. Shvidkoy, Yu. Latushkin (2003)]



The main tool for the spectral instability

Recall that L = L0 +K, where L0 := (1− ϕ)∂x − (b− 2)ϕ′ with

Dom(L) = Dom(L0) =
{
v ∈ L2(R) : (1− ϕ)v′ ∈ L2(R)

}
and K : L2(R) 7→ L2(R) is a compact (Hilbert–Schmidt) operator.

The truncated spectral problem L0v = λv is the first-order equation

(1− ϕ)
dv

dx
+ (2− b)ϕ′v = λv

with the exact solution

v(x) =

{
v+e

λx(1− e−x)2+λ−b, x > 0,
v−e

λx(1− ex)2−λ−b, x < 0,

If Re(λ) > 0, then v+ = 0 and Re(λ) < 5
2 − b.

Similar solutions can be found for L∗0v = λv.
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Euler equations in physical coordinates

η(x, t) - the free surface profile.
φ(x, y, t) - velocity potential satisfying the Laplace equation in

Dη(t) := {(x, y) : −π ≤ x ≤ π, −h0 ≤ y ≤ η(x, t)}

Periodic boundary conditions at x = ±π.
Neumann boundary condition ϕy|y=−h0 = 0.
Nonlinear evolution equatons at the free surface:

ηt + ϕxηx − ϕy = 0,

ϕt +
1

2
(ϕx)2 +

1

2
(ϕy)2 + η = 0,

}
at y = η(x, t),



Conformal transformation



Conformal transformation

The velocity potential is uniquely represented by

ϕ(u, v, t) =
∑
n∈Z

ξ̂n(t)einu
cosh(n(v + h))

cosh(nh)
,

where ξ̂n(t) is the Fourier coefficient for ξ(u, t) = ϕ(u, v = 0, t).
The other canonical variable is η(u, t) = y(u, v = 0, t).



Evolution equations for ξ(u, t) and η(u, t)
The closed system of two evolution equations in holomorphic
variables is{

(1 +Khη)ηt − ηuT−1h ηt + Thξu = 0,
ξtηu − ξuηt + ηηu + Th

[
(1 +Khη)ξt − ξuT−1h ηt + (1 +Khη)η

]
= 0,

where skew-adjoint operators Th and T−1h are defined by

(̂Th)n = i tanh(hn), n ∈ Z,
(̂
T−1h

)
n

=

{
−i coth(hn), n ∈ Z\{0},

0, n = 0,

whereas the self-adjoint operator Kh = T−1h ∂u is defined by

(̂Kh)n =

{
n coth(hn), n ∈ Z\{0},

0, n = 0.

[Dyachenko-elder–Kuznetsov–Spector–Zakharov, 1996]
[Dyachenko-junior–Lushnikov–Korotkevich, 2016]
[Hunter–Ifrim–Tataru, 2016]



Evolution equations for ξ(u, t) and η(u, t)
The closed system of two evolution equations in holomorphic
variables is{

(1 +Khη)ηt − ηuT−1h ηt + Thξu = 0,
ξtηu − ξuηt + ηηu + Th

[
(1 +Khη)ξt − ξuT−1h ηt + (1 +Khη)η

]
= 0,

Traveling waves η(u, t) = η(u− ct) satisfy ξ = cT−1h η, where the
profile η is a solution of Babenko’s equation:

(c2Kh − 1)η =
1

2
Khη

2 + ηKhη.

Both smooth and peaked profiles for 2π-periodic traveling waves are
solutions of this scalar equation.



Evolution equations for ξ(u, t) and η(u, t)
The closed system of two evolution equations in holomorphic
variables is{

(1 +Khη)ηt − ηuT−1h ηt + Thξu = 0,
ξtηu − ξuηt + ηηu + Th

[
(1 +Khη)ξt − ξuT−1h ηt + (1 +Khη)η

]
= 0,

If η(u, t) = η(u− ct, t) and ξ = cT−1h η + ζ, the system can be
simplified into the form:

(1 +Khη)ηt − ηuT−1h ηt + Thζu = 0

and

(1 +Khη)ζt − ζuT−1h ηt + T−1h (ζtηu − ζuηt)

+2cT−1h ηt − c2Khη + (1 +Khη)η +
1

2
Khη

2 = 0.
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+2cT−1h ηt − c2Khη + (1 +Khη)η +
1

2
Khη

2 = 0.

The local model arises when we take Kh = −∂2u and T−1h = −∂u:

2c∂u∂tη = (c2 − 2η)∂2uη − (∂uη)2 + η.



Conserved quantities

Thus, we can consider the toy model (the Hunter–Saxton equation):

2c∂u∂tη = (c2 − 2η)∂2uη − (∂uη)2 + η

in the 2π-periodic domain T.

The toy model has the first three conserved quantities∮
ηdu,

∮
(∂uη)2du,

∮ [
η2 + 2η(∂uη)2

]
du

and the constraint ∮ [
η + (∂uη)2

]
du = 0,

and which is equivalent to the normalization
∮
ηdx = 0 in x-variable.



Local well-posedness of the initial-value problem

The toy model

2c∂u∂tη = (c2 − 2η)∂2uη − (∂uη)2 + η

can be rewritten in the week form:

2c∂tη = (c2 − 2η)∂uη + Π0∂
−1
u Π0

[
(∂uη)2 + η

]
subject to the constraint

∮ [
η + (∂uη)2

]
du = 0. The inviscid Burgers

equation
2c∂tη = (c2 − 2η)∂uη

is locally well-posed in H1
per ∩W 1,∞ and the mapping

Π0∂
−1
u Π0

[
(∂uη)2 + η

]
: H1

per ∩W 1,∞ → H1
per ∩W 1,∞

is bounded on every bounded subset.



Local well-posedness of the initial-value problem

The toy model

2c∂u∂tη = (c2 − 2η)∂2uη − (∂uη)2 + η

can be rewritten in the week form:

2c∂tη = (c2 − 2η)∂uη + Π0∂
−1
u Π0

[
(∂uη)2 + η

]
subject to the constraint

∮ [
η + (∂uη)2

]
du = 0.

Hence we get by standard technique (e.g. via characteristics)

Theorem (S. Locke–D.P., 2024)
The initial-value problem is locally well-posed in H1

per ∩W 1,∞.



Existence of the periodic wave solutions

If η(u, t) = η(u) in the traveling wave frame, then η is a solution of the
differential equation

(c2 − 2η)η′′ − (η′)2 + η = 0, u ∈ T.



Existence of the periodic wave solutions

If η(u, t) = η(u) in the traveling wave frame, then η is a solution of the
differential equation

(c2 − 2η)η′′ − (η′)2 + η = 0, u ∈ T.

Theorem (S. Locke–D. P., 2024)
There exist c∗ := π

2
√
2

and c∞ ∈ (c∗,∞) such that the ODE admits a
unique solution with the profile η ∈ C∞per(T) for every c ∈ (1, c∗) s.t.

‖η‖L∞ → 0 as c→ 1

and a solution with the profile η ∈ C0
per(T) for every c ∈ (c∗, c∞)

satisfying for some A(c) > 0,

η(u) =
c2

2
−A(c)|u|2/3 +O(|u|4/3) as u→ 0.



Existence of the periodic wave solutions

If η(u, t) = η(u) in the traveling wave frame, then η is a solution of the
differential equation

(c2 − 2η)η′′ − (η′)2 + η = 0, u ∈ T.
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Existence of the periodic wave solutions

If η(u, t) = η(u) in the traveling wave frame, then η is a solution of the
differential equation

(c2 − 2η)η′′ − (η′)2 + η = 0, u ∈ T.

The two continuous families meet at c = c∗, where the peaked

profile is explicit:

η(u) =
1

16
(π2 − 4π|u|+ 2u2), u ∈ T.



Existence of the periodic wave solutions

If η(u, t) = η(u) in the traveling wave frame, then η is a solution of the
differential equation

(c2 − 2η)η′′ − (η′)2 + η = 0, u ∈ T.

Note that the highest amplitude

max
u∈T

η(u) = η(0) =
c2

2

follows from Bernoulli’s principle of hydrodynamics and that the |u|2/3
singularity corresponds after the conformal transformation to Stokes’
law of the 1200 angle in the physical coordinate.



Existence of the periodic wave solutions
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Linear stability of periodic waves with smooth profile

By substituting η(u) + η̂(u, t) into

2c∂tη = (c2 − 2η)∂uη + ∂−1u
[
(∂uη)2 + η

]
we obtain the linearized equation with η̂:

2c∂tη̂ = −∂−1u Lη̂, L = −∂u(c2 − 2η)∂u − 1 + 2η′′.



Linear stability of periodic waves with smooth profile

By substituting η(u) + η̂(u, t) into

2c∂tη = (c2 − 2η)∂uη + ∂−1u
[
(∂uη)2 + η

]
we obtain the linearized equation with η̂:

2c∂tη̂ = −∂−1u Lη̂, L = −∂u(c2 − 2η)∂u − 1 + 2η′′.

TW with the smooth profile η is a constrained minimizer of∮ [
η2 + 2η(∂uη)2

]
du for �xed

∮
ηdu and

∮
(∂uη)2du

so that it is linearly stable.
[Locke,P, 2024] [Stanislovova–Stefanov, 2016]



Linear stability of periodic waves with smooth profile

By substituting η(u) + η̂(u, t) into

2c∂tη = (c2 − 2η)∂uη + ∂−1u
[
(∂uη)2 + η

]
we obtain the linearized equation with η̂:

2c∂tη̂ = −∂−1u Lη̂, L = −∂u(c2 − 2η)∂u − 1 + 2η′′.

The peaked wave for c = c∗ is linearly unstable.

η(u) =
1

16
(π2 − 4π|u|+ 2u2), u ∈ T.

[P., Wang, in progress]
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Existence of traveling waves

For a similar model of the reduced Ostrovsky equation

ut + uux = ∂−1x u,

smooth traveling wave solutions in the form u(x, t) = φ(x− ct) satisfy

d

dx

(
(c− φ)

dφ

dx

)
+ φ(x) = 0, x ∈ T,

under the zero-mean constraint
∮
φ(x)dx = 0.



Existence of traveling waves

For a similar model of the reduced Ostrovsky equation

ut + uux = ∂−1x u,

The first integral is E(φ, φ′) = 1
2 (c− φ)2(φ′)2 + c

2φ
2 − 1

3φ
3.
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Existence of traveling waves

For a similar model of the reduced Ostrovsky equation

ut + uux = ∂−1x u,

For c = c∗ := π2

9 the peaked wave has the parabolic profile

φ(x) =
3x2 − π2

18
, x ∈ T,

which can be periodically continued as the peaked periodic wave.



Existence of traveling waves

For a similar model of the reduced Ostrovsky equation

ut + uux = ∂−1x u,

Uniqueness of the peaked periodic wave for c = c∗ was proven in
[A. Geyer & D.P, 2019] [G. Bruell & Dhara, 2019]

Interesting that cusped profiles do not exist in the weak formulation
for c > c∗ [A. Geyer & D.P, 2019].



Stability of smooth traveling waves

Using u(x, t) = φ(x− ct) + v(x− ct)eλt, one can obtain the spectral
stability problem in the form

λv = ∂xLv

with the self-adjoint linear operator

L = Π0

(
∂−2x + c− φ

)
Π0 : L̇2

per → L̇2
per,

where L̇2
per is the L2 space of periodic function with zero mean.

Spectral stability of smooth periodic waves was proven in
[Hakkaev & Stanislavova & Stefanov, 2017] [Johnson & P., 2016] [A. Geyer & P., 2017]



Stability of smooth traveling waves

Using u(x, t) = φ(x− ct) + v(x− ct)eλt, one can obtain the spectral
stability problem in the form

λv = ∂xLv

with the self-adjoint linear operator

L = Π0

(
∂−2x + c− φ

)
Π0 : L̇2

per → L̇2
per,

where L̇2
per is the L2 space of periodic function with zero mean.

The smooth periodic wave with the profile φ is a local constrained
minimizer of the energy H(u) subject to the fixed momentum Q(u):

H(u) = −1

2

∮
(∂−1x u)2dx− 1

6

∮
u3dx, Q(u) =

1

2

∮
u2dx

with L being the Hessian of H(u) + cQ(u).



Stability of smooth traveling waves

Using u(x, t) = φ(x− ct) + v(x− ct)eλt, one can obtain the spectral
stability problem in the form

λv = ∂xLv

with the self-adjoint linear operator

L = Π0

(
∂−2x + c− φ

)
Π0 : L̇2

per → L̇2
per,

where L̇2
per is the L2 space of periodic function with zero mean.

The stability argument breaks in the limit c→ c∗, where the smooth
profile becomes peaked.

[A. Geyer & D.P, 2019].



Linear instability of the peaked periodic wave
Linearized evolution the perturbation v to the peaked profile φ∗:{

vt + ∂x [(φ∗(x)− c∗)v] = ∂−1x v, t > 0,
v|t=0 = v0.

Theorem (A. Geyer, D.P., 2019)
For every v0 ∈ Dom(∂xL) ∃! global solution v ∈ C0(R,Dom(∂xL)). If
v0 is odd, then the solution satisfies

C‖v0‖L2eπt/6 ≤ ‖v(t, ·)‖L2 ≤ ‖v0‖L2eπt/6, t > 0,

which implies the linear instability of the profile φ∗.



Linear instability of the peaked periodic wave

For the spectral problem

λv = Av := ∂x [(c∗ − φ∗(x))v] + ∂−1x v,

with
Dom(A) =

{
v ∈ L̇2

per : ∂x [(c∗ − φ∗)v] ∈ L̇2
per

}
.

Theorem (A. Geyer & D. P., 2020)

σ(A) =
{
λ ∈ C : −π

6
≤ Re(λ) ≤ π

6

}
.

The width of the instability band corresponds to the bound:

1

2
‖v0‖L2eπt/6 ≤ ‖v(t, ·)‖L2 ≤ ‖v0‖L2eπt/6, t > 0.



Summary

Three different models with peaked waves admit the same pattern:

The smooth waves are linearly stable in the time evolution.

The peaked wave is linearly unstable in the time evolution.

The initial-value problem is locally well-posed in H1 ∩W 1,∞,
which excludes the family of cusped waves.


