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The Fermi-Pasta-Ulam problem

qj−1 qj qj+1

System of particles on the line

Hamiltonian for nearest neighbour interactions is given by H =
∑
j

1

2
q̇2j + V (qj+1 − qj)

Equations of motion are given by q̈j = V ′(qj+1 − qj)− V ′(qj − qj−1)

Potential V (q) = 1
2q

2 + 1
3αq

3 + 1
4βq

4 + . . .

Numerical experiments showed long-time recurrent formations of solitary waves (FPU, 1955)

Main question: Can we describe dynamics by reducing the FPU to an integrable system?
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KdV limit for small-amplitude and long-scale waves

Ansatz in the strain variables:

rj(t) = qj+1(t)− qj(t) := ε2R
(
ε (j − t) , ε3t

)
+ error

Approximation satisfies the FPU system up to O(ε6) if R satisfies the KdV equation:

∂τR + αR∂ξR +
1

24
∂3ξR = 0

KdV is an integrable system with asymptotic stability of solitons and stability of periodic solutions.

First derivation: N. Zabusky and M. Kruskal (1965)

Rigorous justification:
Schneider–Wayne (1999), Friesecke–Pego (1999-2004), Bambusi–Ponno (2005-2006)

Follow-up work: generalized KdV (Dumas–P., 2014), KdV on extended time intervals (Khan–P,
2017), polyatomic case (Gaison–Moskow–Wright–Zhang, 2014), nonlocal interaction
(Herrmann–Mikikits–Leitner, 2016), and more.
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Algorithm for justification of reduced models from FPU models

1 Find the best coordinates to transform the problem.

2 Check that the reduced model formally arises in the appropriate limit of the transformed equations.

3 Define error terms to the leading-order terms and obtain residual equations.

4 Control the error terms from the residual equations in suitable norms by using the energy
conservation, approximation estimates, and Gronwall inequality.

5 Check that the reduced models have smooth solutions which are compatible with the estimates.

I will illustrate this algorithm with three recent examples.
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Case Study 1: Modeling of granular chains

Granular chains contain densely packed, elastically interacting particles with Hertzian forces.

N. Boechler, G. Theocharis, P.G. Kevrekidis, M.A. Porter, C. Daraio (2001-present days).
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Logarithmic KdV equation

Granular chains are modeled with Newton’s equations of motion:

q̈j = V ′(qj+1 − qj)− V ′(qj − qj−1)

where V is the contact interaction potential for spherical beads (H. Hertz, 1882):

V (q) =

{
|q|1+α, q < 0,
0, q > 0

α =
3

2
.

For beads with hollows, α→ 1. If α = 1 + ε2, then one can write for rj = −(qj+1 − qj) ≥ 0:

r̈j −∆rj = ∆ [rj (|rj |ε − 1)] = ε∆rj log rj +O(ε2).

If rj(t) = R(ξ, τ) + error with ξ := 2
√

3ε (j − t), τ :=
√

3ε3 t, then we obtain the log-KdV equation

∂τR + ∂ξ(R logR) + ∂3ξR = 0.

A.Chatterjee (1999); G.James–D.P (2014).
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Justification of log-KdV
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Figure: Solitary waves of the FPU system (blue) in comparison with the Gaussian solitons of the log-KdV
equation (green) for α = 1.5 (left) and α = 1.1 (right).

∂τR + ∂ξ(R logR) + ∂3ξR = 0 ⇒ R(ξ, τ) = ce−(ξ−cτ)
2/4+1/2.
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Justification of log-KdV

Theorem (R. Carles–D.P, 2014)

For any R0 ∈ X in the set

X :=
{
R ∈ H1(R) : R

√
| log |R|| ∈ L2(R)

}
.

there exists a global solution R ∈ L∞(R,X ) to the log–KdV equation such that

‖R(τ, ·)‖L2 ≤ ‖R0‖L2 , E (R(τ, ·)) ≤ E (R0), for all τ > 0,

where

E (R) =
1

2

∫
R

[
(Rξ)2 − R2 log |R|

]
dξ.
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Justification of log-KdV

1 Find the best coordinates to transform the problem.

2 Check that the reduced model formally arises in the appropriate limit of the transformed equations.

3 Define error terms to the leading-order terms and obtain residual equations.

4 Control the error terms from the residual equations in suitable norms by using the energy
conservation, approximation estimates, and Gronwall inequality.

5 Check that the reduced models have smooth solutions which are compatible with the estimates.

A way around the problem is to consider pre-compression with strictly positive solutions:
R(τ, ξ) ≥ R0 > 0 for every (τ, ξ).
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Justification of log-KdV

Theorem (E. Dumas–D.P, 2014)

Let R ∈ C 0([0, τ0],Hs
loc(R)) be a solution of the log–KdV equation for some s ≥ 6 and τ0 > 0 such that

R(t, ·) ≥ R0 > 0 for τ ∈ [0, τ0]. Then there exist ε0 > 0 and C0 > 0 such that for every ε ∈ (0, ε0), the
unique solution r ∈ C 1([0, τ0/ε

3], `2(Z)) with appropriately choosen initial data satisfies

‖r(t)− R(2
√

3ε(· − t),
√

3ε3t)‖`2 ≤ C0ε
3/2, t ∈ [0, τ0/ε

3].

The approximation result between solutions on the grid and solutions on the line is given by

‖u‖`2(Z) ≤ Csε
−1/2‖U‖Hs (R),

where uj = U(εj) with U ∈ Hs(R) for integer s ≥ 1.
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Case Study 2: Modeling of transverse modulations

j−1,k−1 j,k−1 j+1,k−1

j−1,k j,k j+1,k

j−1,k+1 j,k+1 j+1,k+1
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KP-II limit for small-amplitude, long-scale, transversely modulated waves

There exist two versions of the two-dimensional generalization of the KdV equation:

(KP-I) ∂ξ(∂τR + αR∂ξR +
1

24
∂3ξR)− ∂2ηR = 0

and

(KP-II) ∂ξ(∂τR + αR∂ξR +
1

24
∂3ξR) + ∂2ηR = 0

For water waves, (KP-I) arises for problems with surface tension and (KP-II) arises for gravity waves.

For Bose–Einstein condensates (defocusing Gross–Pitaevskii equation), only (KP-I) arises in the
asymptotic reduction on the nonzero background.

For the FPU lattice on the square lattice, only (KP-II) arises in the asymptotic reduction.
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KP-I limit

Line solitary and periodic waves are unstable for KP-I and the perturbations evolve into two-dimensional
solitons called lumps.
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KP-II limit

Line solitary and periodic waves are transversally stable for KP-II (Mizumachi, 2015; Haragus, Li, P,
2017), and form stable web patterns in the plane.
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Scalar 2D FPU model

H =
∑
(m,n)

1

2
q̇2m,n +

1

2
(qm+1,n − qm,n)2 +

1

3
α(qm+1,n − qm,n)3 +

1

2
ε2(qm,n+1 − qm,n)2

Duncan–Eilbeck–Zakharov (1991) formally derived KP-II equation

∂ξ(∂τR + αR∂ξR +
1

24
∂3ξR) + ∂2ηR = 0

Rigorous justification of the KP-II limit has been an open problem for 30 years!

It was only justified recently: Gallone–Pasquali (Nonlinearity, 2021) on T2; Hristov–P (ZAMP,
2022) on R2; P–Schneider (SIAM J. Appl. Math., 2023) on T2 for oblique propagation.
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Strain variables

The scalar model can be expressed in the strain variables as: u̇m,n = wm+1,n − wm,n,
v̇m,n = wm,n+1 − wm,n,
ẇm,n = V ′(um,n)− V ′(um−1,n) + V ′(vm,n)− V ′(vm,n−1),

where V ′(u) = u − u2 will be used for simplifications.

We can eliminate wm,n and get
üm,n = V ′(um+1,n)− 2V ′(um,n) + V ′(um−1,n)

+V ′(vm+1,n)− V ′(vm+1,n−1)− V ′(vm,n) + V ′(vm,n−1),
v̈m,n = V ′(vm,n+1)− 2V ′(vm,n) + V ′(vm,n−1)

+V ′(um,n+1)− V ′(um−1,n+1)− V ′(um,n) + V ′(um−1,n),

There exists still a compatibility condition between um,n and vm,n.
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Fourier transform

With Fourier transform the system converts into the form:{
∂2t û = −(ω2

k + ω2
l )û + ω2

k(û ∗ û)− (e−ik − 1)(1− e il)(v̂ ∗ v̂),
∂2t v̂ = −(ω2

k + ω2
l )v̂ + ω2

l (v̂ ∗ v̂)− (e−il − 1)(1− e ik)(û ∗ û).

where ω2
k := 2− 2 cos(k).

The compatibility condition between um,n and vm,n can be expressed easier in the Fourier form as

(e−ik − 1)v̂(k , l , t) = (e−il − 1)û(k, l , t).
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Formal limit for arbitrary propagation direction

The leading order approximation for an arbitrary angle φ can be expressed by

um,n(t) = ε2A(X ,Y ,T ), vm,n(t) = ε2B(X ,Y ,T ),

where
X = ε((cosφ)m + (sinφ)n − t), Y = ε2(−(sinφ)m + (cosφ)n), T = ε3t.

This yields the KP-II equation

−2∂X∂TA =
1

12
[(cosφ)4 + (sinφ)4]∂4XA + ∂2YA

− (cosφ)2∂2X (A2)− (sinφ)(cosφ))∂2X (B2)

and the compatibility condition
(cosφ)∂XB = (sinφ)∂XA

up to the leading order.
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Justification result for φ = 0

Theorem (Hristov–P, 2022)

Let A ∈ C 0([0, τ0],Hs(R2)) be a solution to the KP-II equation with fixed integer s ≥ 9, whose initial
data satisfies A0 ∈ Hs(R2), ∂−2X ∂2YA0 ∈ Hs(R2), and

∂−1X ∂2Y
(
∂−2X ∂2YA0 + A2

0

)
∈ Hs−6(R2).

Then there exist ε0 > 0 and C0 > 0 such that for every ε ∈ (0, ε0), the unique solution of the 2D FPU
system satisfies for t ∈ [0, τ0ε

−3]

‖um,n(t)− ε2A(ε(m − t), ε2n, ε3t)‖`2 + ‖vm,n(t)‖`2 + ‖wm,n(t) + ε2A(ε(m − t), ε2n, ε3t)‖`2 ≤ C0ε
5/2.

The approximation result between solutions on the grid and solutions on R2 is given by

‖u‖`2(Z2) ≤ Csε
−3/2‖U‖Hs (R2),

where uj = U(εm, ε2n) with U ∈ Hs(R2) for integer s ≥ 2.
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Justification result for φ 6= 0

We need to control solutions of the original KP-II equation with additional requirement:

∂−1X ∂Y (A2) ∈ Hs−6

However, this is impossible on R2 (L. Molinet, J.-C. Saut, and N. Tzvetkov, 2002).

On other hand, working on torus T2 (Bourgain, 1993), if the mean value of A in X is independent of Y ,
then ∂−3X ∂3YA is controllable in Hs(T2) and so is ∂−1X ∂Y (A2).

As a result, we have justified the KP-II equation for an arbitrary direction of propagation on T2, but not
on R2 (P-Schneider, 2023). The justification result also extends to the line solitary waves (no transverse
modulations) for an arbitrary direction of propagation (the KdV equation).
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Case Study 3: The monoatomic FPU as a limit of a diatomic FPU

The Hamiltonian is

H =
∑
j∈2Z

1

2
Q̇2

j +
1

2
ε2q̇2j+1 + V (qj+1 − Qj) + V (Qj − qj−1),

where ε is the mass ratio between light and heavy particles and V ′(u) = u + u2 will be used.
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Formal limit of small-mass ratio

Equations of motion:

Q̈j = V ′(qj+1 − Qj)− V ′(Qj − qj−1),

ε2q̈j+1 = V ′(Qj+2 − qj+1)− V ′(qj+1 − Qj),

where j ∈ 2Z.

The small-mass limit ε = 0 is satisfied if

qj+1 =
Qj+2 + Qj

2
,

for which the scalar FPU system arises:

Q̈j = V ′
(
Qj+2 − Qj

2

)
− V ′

(
Qj − Qj−2

2

)
.

K. Jayaprakash, Y. Starosvetsky, A. Vakakis, PRE 83 (2011) 11
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Solitary waves with and without exponentially small tails

Generally, the traveling solitary waves have oscillatory tails which are exponentially small in ε.

A. Hoffman, J. D. Wright (2017); T. Faver, J. D. Wright (2018); C. Lustri, M. Porter (2018)
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Solitary waves with and without exponentially small tails

However, for a sequence of special values of {εn}n∈N such that εn → 0 as n→∞, the traveling solitary
waves are fully localized without oscillatory tails.

K. Jayaprakash, Y. Starosvetsky, A. Vakakis (2011); C. Lustri, M. Porter (2018)
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Justification result

Theorem (P–Schneider, 2020)

Assume that Q∗ ∈ C 1([0,T0], `2) is a suitable solution to the monoatomic FPU system

Q̈j = V ′
(
Qj+2 − Qj

2

)
− V ′

(
Qj − Qj−2

2

)
.

There exist ε0 > 0 and C0 > 0 such that for all ε ∈ (0, ε0) if [Q(0), q(0)] ∈ `2 × `2 satisfy

sup
j∈2Z
|Qj(0)− Q∗j (0)|+

∣∣∣∣qj+1(0)− 1

2
(Q∗j (0) + Q∗j+2(0))

∣∣∣∣ ≤ ε,
then the unique solution to the diatomic FPU system satisfies for every t ∈ [0,T0]:

sup
j∈2Z
|Qj(t)− Q∗j (t)|+

∣∣∣∣qj+1(t)− 1

2
(Q∗j (t) + Q∗j+2(t))

∣∣∣∣ ≤ C0ε.
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Justification result

The approximation result is nontrivial since the right-hand side of the vector field is O(ε−2):

Q̈j = V ′(qj+1 − Qj)− V ′(Qj − qj−1),

q̈j+1 = ε−2 [V ′(Qj+2 − qj+1)− V ′(qj+1 − Qj)] .

If

qj+1 =
1

2
(Qj + Qj+2) +O(ε),

then Gronwall’s inequlity gives only estimates on the time scale of O(ε). The theorem ensures proximity
on the natural time scale of O(1) for which dynamics of the FPU system is nontrivial.
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Justification result

1 Find the best coordinates to transform the problem.

2 Check that the reduced model formally arises in the appropriate limit of the transformed equations.

3 Define error terms to the leading-order terms and obtain residual equations.

4 Control the error terms from the residual equations in suitable norms by using the energy
conservation, approximation estimates, and Gronwall inequality.

5 Check that the reduced models have smooth solutions which are compatible with the estimates.

D. Pelinovsky (McMaster University) FPU systems 21 / 23



Proof of the justification result

1 Find the best coordinates to transform the problem.

We are using the coordnates:

Uj :=
1

2
(Qj+2 − Qj) and wj+1 := qj+1 −

1

2
(Qj+2 + Qj).

It turns out that the same choice of coordinates was made in A. Hoffman, J. D. Wright (2017).

The diatomic FPU system is now written as

Üj + V ′(Uj) + w2
j+1 =

1

2
V ′(Uj+2 + wj+3) +

1

2
V ′(Uj−2 − wj−1),

ε2ẅj+1 + (2 + ε2)wj+1(1 + 2Uj) = −ε
2

2
V ′(Uj+2 + wj+3) +

ε2

2
V ′(Uj−2 − wj−1),

where V ′(u) = u + u2 is used for simplicity.
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Proof of the justification result

2 Check that the reduced model formally arises in the appropriate limit of the transformed equations.

We have rewritten the diatomic FPU system in the form:

Üj + V ′(Uj) + w2
j+1 =

1

2
V ′(Uj+2 + wj+3) +

1

2
V ′(Uj−2 − wj−1),

ε2ẅj+1 + (2 + ε2)wj+1(1 + 2Uj) = −ε
2

2
V ′(Uj+2 + wj+3) +

ε2

2
V ′(Uj−2 − wj−1).

If ε = 0 and wj+1 = 0, then the strain variable Uj satisfies the monoatomic FPU lattice

Üj =
1

2
V ′(Uj+2) +

1

2
V ′(Uj−2)− V ′(Uj).
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Proof of the justification result

3 Define error terms to the leading-order terms and obtain residual equations.

We have rewritten the diatomic FPU system in the form:

Üj + V ′(Uj) + w2
j+1 =

1

2
V ′(Uj+2 + wj+3) +

1

2
V ′(Uj−2 − wj−1),

ε2ẅj+1 + (2 + ε2)wj+1(1 + 2Uj) = −ε
2

2
V ′(Uj+2 + wj+3) +

ε2

2
V ′(Uj−2 − wj−1).

Let Ψ satisfy

Ψ̈j =
1

2
V ′(Ψj+2) +

1

2
V ′(Ψj−2)− V ′(Ψj).

The error terms are U −Ψ and w . The residual terms are

ResU,j = 0, Resw ,j = −ε
2

2
V ′(Ψj+2) +

ε2

2
V ′(Ψj−2).
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Proof of the justification result

4 Control the residual terms in suitable norm.

The residual terms are controlled by

sup
t∈[0,T0]

‖Resw‖`2 ≤ Cε2,

as long as Ψ ∈ C ([0,T0], `2).
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Proof of the justification result

4 Control the error term in suitable norm from the energy conservation

The error terms in the decomposition

Uj = Ψj + εRj and wj+1 = εvj+1.

are controlled from the energy function

E (t) =
1

2

∑
j∈2Z

Ṙ2
j + R2

j + ε2v̇2
j+1 + 2v2

j+1 + 2Ψj(R
2
j + 2v2

j+1) + 4εRjv
2
j+1,

as long as

sup
t∈[0,T0]

sup
j∈2Z
|Ψj(t)| < 1

4
.
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Proof of the justification result

4 Control the energy function from the balance equation and Gronwall’s inequality.

d

dt
E (t) ≤ C1E (t)1/2 + C2E (t) + C3εE (t)3/2, t ∈ [0,T0].

E (t)1/2 ≤
[
E (0)1/2 + (2C2)−1C1

]
e2C2t , t ∈ [0,T0].

as long as εE (t)1/2 ≤ C2/C3.
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Proof of the justification result

5 Check that the reduced models have smooth solutions which are compatible with the estimates.

We have assumed that Ψ ∈ C 1([0,T0], `2) is a solution of

Ψ̈j =
1

2
V ′(Ψj+2) +

1

2
V ′(Ψj−2)− V ′(Ψj)

such that

sup
t∈[0,T0]

sup
j∈2Z
|Ψj(t)| < 1

4
.

Since the monoatomic system is Hamiltonian with the conserved energy

HFPU =
∑
j∈2Z

1

2
Ψ̇2

j + Ψ2
j +

2

3
Ψ3

j ,

the constraint is satisfied at least for sufficiently small initial data.
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Summary

With three motivational examples, I have illustrated the justification analysis of obtaining nice
integrable systems as reduction of non-integrable FPU systems.

One of the major concerns is to verify that the reduced system admits nice smooth solutions which
would justify the reduction.

The other points to take home is that the approximation result should hold on times sufficiently
long to observe nontrivial dynamics of the reduced system.

The justification analysis relies on the choice of the energy function which always originates from
the energy conservation of the original FPU system.
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