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The Fermi-Pasta-Ulam particle system

gj-1 q; gj+1

WV —@— W@ —@—AMA—

System of particles on the line

1
Hamiltonian for nearest neighbour interactions is given by H = Z qu + V(gj+1— q))
J

Equations of motion are given by ¢; = V'(qj+1 — q;) — V'(g; — qj-1)
Potential V(q) = 3¢° + 3aq® + 38q* + ...
Numerical experiments showed long-time recurrent formations of solitary waves (FPU, 1955)

Main question: Can we describe dynamics by reducing the FPU to an integrable system?
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KdV limit for small-amplitude and long-scale waves

@ Ansatz in the strain variables:
ri(t) = qi41(t) — qj(t) :== R (¢ (j — t) ,°t) + error

@ Approximation satisfies the FPU system up to O(e°) if R satisfies the KdV equation:
9,R + aROR + L8R =0
T « an =
YRS
KdV is an integrable system with asymptotic stability of solitons and stability of periodic solutions.

o First derivation: N. Zabusky and M. Kruskal (1965)

@ Rigorous justification:
Schneider—Wayne (1999), Friesecke—Pego (1999-2004), Bambusi—Ponno (2005-2006)

o Follow-up: generalized KdV (Dumas—P., 2014), KdV on extended time intervals (Khan—-P, 2017),
polyatomic case (Gaison—Moskow—Wright—Zhang, 2014), nonlocal interaction
(Herrmann—Mikikits—Leitner, 2016), and more. Recent: Hong-Kwak-Yang, ARMA (2021)
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Algorithm for justification of reduced models from FPU models

@ Find the best coordinates to transform the problem.
@ Check that the reduced model formally arises in the appropriate limit of the transformed equations.
@ Define error terms to the leading-order terms and obtain residual equations.

@ Control the error terms from the residual equations in suitable norms by using the energy
conservation, approximation estimates, and Gronwall inequality.
@ Check that the reduced models have smooth solutions which are compatible with the estimates.

I will illustrate this algorithm with three recent examples.
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Case Study 1: Modeling of granular chains
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@ Granular chains contain densely packed, elastically interacting particles with Hertzian forces.
o N. Boechler, G. Theocharis, P.G. Kevrekidis, M.A. Porter, C. Daraio (2001-present days).
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Logarithmic KdV equation

Granular chains are modeled with Newton's equations of motion:

4j = V'(gj+1 — q)) — V'(qj — gj-1)

where V is the contact interaction potential for spherical beads (H. Hertz, 1882):

_ [ lal***, g<0, 3
V(q)_{07 g>0 T

For beads with hollows, & — 1. If & = 1 + €2, then one can write for r; = —(gj+1 — q;) > 0:
i = Arp= A [ (In]° = 1)] = € Arjlog rj + O(e?).
If rj(t) = R(&,7) + error with € := 21/3¢(j — t), 7 := V/3€> t, then we obtain the log-KdV equation
9:R+ 0¢(Rlog R) + 0¢R = 0.
A.Chatterjee (1999); G.James-D.P (2014).
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Justification of log-KdV

Figure: Solitary waves of the FPU system (blue) in comparison with the Gaussian solitons of the log-KdV
equation (green) for @ = 1.5 (left) and o = 1.1 (right).

9:R+ 0c(RlogR) + 3R =0 = R((,7) = ce” (E-eTV/4+1/2

D. Pelinovsky (McMaster University) FPU systems 7/33



Justification of log-KdV

@ Find the best coordinates to transform the problem.
@ Check that the reduced model formally arises in the appropriate limit of the transformed equations.
@ Define error terms to the leading-order terms and obtain residual equations.

© Control the error terms from the residual equations in suitable norms by using the energy
conservation, approximation estimates, and Gronwall inequality.

@ Check that the reduced models have smooth solutions which are compatible with the estimates.
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Justification of log-KdV

Theorem (R. Carles-D.P, 2014)
For any Ry € X in the set

X = {R e HYR): R+/Jlog|R]| € L2(R)}.
there exists a global solution R € L*°(R, X) to the log—KdV equation such that

IR(7, )2 < [IRollzs  E(R(7,-)) < E(Ro), for all 7 >0,

where
E(R) =5 [ [(Ro - R*log]R] o

A way around the problem is to consider pre-compression with strictly positive solutions:
R(7,£) > Ry > 0 for every (7,¢&).
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Justification of log-KdV

Theorem (E. Dumas-D.P, 2014)

Let R € C°([0,7o], H§ .(R)) be a solution of the log—KdV equation for some s > 6 and 1o > 0 such that
R(t,-) > Ry > 0 for 7 € [0,70]. Then there exist g > 0 and Cy > 0 such that for every € € (0, €), the
unique solution r € C([0,0/€3],¢%(Z)) with appropriately choosen initial data satisfies

Ir(t) = R(2V3e(- — £),V3e¥t) 2 < Coe¥?, ¢ € [0,70/€”].

The approximation result between solutions on the grid and solutions on the line is given by

lullee@zy < Cse™ 2| U] sy,

where u; = U(ej) with U € H*(R) for integer s > 1.
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Proof of the approximation result

lullee@zy < Cse™ 2| U] sy,

where u; = U(gj) with U € H*(R) for integer s > 1.

The proof is based on the Fourier transform

" 1 [7 ,
0 9 = oo = — ( e
) E ue T, U= o B 0(6)e?,
jez

U= o / O(k) e*ddk = —/ = "Pfdp

@m+)r , 0+2rm\
o2re Z /(2m_1)7r v (7) pjdp_ 2me Z/ < ) e’ do

meZ

and

A _ ) (0+2mm
so that d(0) = e~ ZmeZ U (H2mm),
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By Parseval's equality,

1 g ~ (O +2mm\ |2

2 E—
ol = 5 | ZU( ) fao
1 0+ 2mm
e > [ o(7r)

my,myEZ

i (2 e ) (2 (7))

miEZ myEZ

IN

(j<9+2wm2>yw

€

0 (9 + 27”"2) rcw) .
€

For € € (0,1], the first term in the product takes values between 1 and Y (1 + 72m?)~! < co. The
second term can be compared with the H* norm of U:

<

1 [ ~ 2
Vs = 5= [ 1) [000)

27“2/_# (1+ 9+27rm)2) (0+€27rm>)

For any m € Z, § € [, 7], we have (§ 4+ 2mm)? > 72m?, so that the factor (1 + (0 + 27m)?/€?) is
bounded from below by (1 + 72m?/e?).
— k

2
dé.




Case Study 2: Modeling of transverse modulations

J+1,k+1

D. Pelinovsky (McMaster University) FPU systems 10/33



KP-II limit for small-amplitude, long-scale, transversely modulated waves

There exist two versions of the two-dimensional generalization of the KdV equation:
1
(KP-1)  0¢(0,R + aRO:R + ﬂagR) —92R=0

and
1
(KP-11)  0¢(0-R + aROeR + ﬂagR) +02R=0

For water waves, (KP-I) arises for problems with surface tension and (KP-II) arises for gravity waves.

For Bose-Einstein condensates (defocusing Gross—Pitaevskii equation), only (KP-I) arises in the
asymptotic reduction on the nonzero background.

For the FPU lattice on the square lattice, only (KP-II) arises in the asymptotic reduction.
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KP-I limit

Line solitary and periodic waves are unstable for KP-I and the perturbations evolve into two-dimensional
solitons called lumps.
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KP-I1 limit

Line solitary and periodic waves are transversally stable for KP-Il (Mizumachi, 2015; Haragus, Li, P,
2017), and form stable web patterns in the plane.
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Scalar 2D FPU model

1, 1 1 1
H= Z Equn,n + E(qurl,n ~ )’ + §a(Qm+1,n ~ )’ + Egz(qm,nﬂ ~ )’

(m,n)

@ Duncan-Eilbeck-Zakharov (1991) formally derived KP-II equation
13 2
85(8-,—/‘? + OéRagR + ﬂaﬁR) + (977/'? =0
@ Rigorous justification of the KP-II limit has been an open problem for 30 years!

e It was only justified recently: Gallone—Pasquali (Nonlinearity, 2021) on T?; Hristov—P (ZAMP,
2022) on R2; P-Schneider (SIAM J. Appl. Math., 2023) on T? for oblique propagation.
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Recall the justification algorithm

@ Find the best coordinates to transform the problem.
@ Check that the reduced model formally arises in the appropriate limit of the transformed equations.
@ Define error terms to the leading-order terms and obtain residual equations.

© Control the error terms from the residual equations in suitable norms by using the energy
conservation, approximation estimates, and Gronwall inequality.

@ Check that the reduced models have smooth solutions which are compatible with the estimates.
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Strain variables

The scalar model can be expressed in the strain variables as:
[fm,n = Wm+1,n — Wm,n,
Vm,n = Wm,n+1 — Wm,n,
H ! / ! /
Wim,n = V'(tm,n) = V'(um-1,n) + V'(Vm,n) = V'(Vin,n-1),

where V/(u) = u — u? will be used for simplifications.

We can eliminate w,, , and get

i]m,n = V/(Um+1,n) - 2V/(um,n) + V/(Umfl,n)

+V/(Vm+1,n) - V/(Vm+1,n—1) - V/(Vm,n) + V/(Vm,n—l)a
‘./.m,n — V/(Vm,n+1) - 2V/(Vm,n) + V/(Vm,n—l)

+V,(Um,n+1) - V/(Um—l,n+1) - V,(Um,n) + V/(Um—l,n);

There exists still a compatibility condition between uy, , and vy, p.
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Fourier transform

With Fourier transform the system converts into the form:

020 = —(w? + w?) i+ wi (0 * 0) — (e~ * — 1)(1 — &)(V * V)
020 = —(w? + w0 + wA(V * ) — (e~ — 1)(1 — e*) (G  d).

where w? := 2 — 2 cos(k).

The compatibility condition between up, , and vy, , can be expressed easier in the Fourier form as

(e~ —1)V(k, I, t) = (e~ = 1)a(k, I, t).

D. Pelinovsky (McMaster University) FPU systems 17 /33



Formal limit for arbitrary propagation direction

The leading order approximation for an arbitrary angle ¢ can be expressed by
Umn(t) = 2AX, Y, T), Vmn(t) = ?B(X, Y, T),

where
X = e((cosg)m + (sing)n —t), Y =e*(—(sing)m+ (cos¢)n), T =&t
This yields the KP-Il equation

1
—20x0TA = E[(cos, $)* + (sin ¢)*|O%A + 03 A

— (cos §)?0% (A%) — (sin ¢)(cos ¢))9x (B?)

and the compatibility condition

(cos ¢)Ox B = (sin ¢)Ox A
up to the leading order. For horizontal propagation, ¢ =0 and B(X, Y, T) = 0.
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Justification result for ¢ = 0

Theorem (Hristov—P, 2022)

Let A € CO(]0, 7o], H*(IR?)) be a solution to the KP-II equation with fixed integer s > 9, whose initial
data satisfies Ay € H*(R?), 05202 Ao € H*(R?), and

0x'0% (05205 Ao + A3) € HO(R?).

Then there exist g > 0 and Cy > 0 such that for every € € (0,2¢), the unique solution of the 2D FPU
system satisfies for t € [0, 7oe 3]

lum,n(t) — €2 Ale(m — t),2n,%t) |2 + [[Vin,n(E)ll2 + [ Win,n(2) + 2Ale(m — £),€2n, %) |2 < Goe™2.

The approximation result between solutions on the grid and solutions on R? is given by
-3/2
lull ey < Coe 2| Ul ey,

where u; = U(em,£2n) with U € H*(R?) for integer s > 2.
— il



Expansions to satisfy the compatibility conditions

The scalar model can be expressed in the strain variables as:

Um,n = Wm+1,n — Wm,n,
Vm,n = Wm,n+1 — Wm,n,

Wm,n = V/(Um,n) - Vl(umfl,n) + V/(Vm,n) - V/(Vm,n71)7
@ We introduce the following decomposition:

Um,n = 52A (f? m, T) + 52 Um,n

Vm,n = 5285 (§7 m, T) + 52 Vm,n

Wm,n = 52 W, (57 7, T) + 52 Wm,n
where £ = e(m —t),n =&?n,7 = &3t

@ Here B. and W.; are introduced to satisfy the linear equations of motion:

Um,n = Wm41,n — Wm,n, Vm,n = Wmn+1 — Wm,n-

) )
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Expansions to satisfy the compatibility conditions

These equations are satisfied up to O(£®) order:

W. (€ +e,m) — We (§,m) = —e0:A(&, n) + £20-A(¢, ),
We (&m+e?) — We (&n) = —e0¢B-(&,n) + €20-B(&,1).

@ We seek an approximate solution by expanding W_, B, in orders of ¢

W. = ~A+ e (30cA) + 22 (9710, A ~ 02A) — & (30,.A)

B. = e07 '0,A — &2 (30,A) + & (301024 + 500,

By construction of terms W, and B., the residual terms of the two equations vanish to O(e®).
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Control of residual terms

@ The last remaining equation is
Wik = Uk — Up—16 + Vik = Vik—1
+ 2% [2AUjk = 2A (€ — 1) Ui+ (Uie)” = (Ujo1i)?] + Res
@ The residual term is given by:
Res} :=e0cW. — €20, W. + A(€,m) — A(€ — £,7)
B. (&) — B- (61— %) + &2 [A(6n) — A€ — )],

e Expanding Res" gives the following formal expansion:
1
Res/} = ¢&* {2BTA + 5 0PA+ O ORA+ O (A2)}
“oo,a+ Lotat Lazas Loz ()| + o
—& (3% +ﬂ§ +§ﬂ+§§()+(6)'
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Control of residual terms

Let A € CO(R, H*) be a solution to the KP-II equation with s > 9. There is a positive constant C that
depend on A such that for all € € (0, 1], we have

Rl + | Rl + [ Rt < €.

@ The formal expansions of the residual terms are handled using Taylor's theorem, e.g.

1

1
A(&+e,n)—A(E,n) = 585A+§£28§A+§

1 15 [ )
S0¢A+ 56482144—565 /0 (1-r)* 0 A(e(j+r), ek, %t)dr

@ The integral residual terms is estimated in ¢2-norm for every r on [0, 1]
@ Since the rigorous bound loses O(¢~3/2), the formal bound of O(e%) yields O(¢7/2) in the £>-norm.
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Energy Estimates

@ Recall the total energy of the FPU system in strain variables
1 1
H=3 > Wi+ (k) + (k) + 3 > ()
(,k)ez? U-k)ez?
@ This suggests the following energy quantity to control the growth of the approximation error:

1 1
=5 DT WA+ (Vi) + (Vi) + 552 > [3A(Uj,k)2 + (Uj,kﬂ :

j,kez? jkeZ?

@ The e-dependent terms in the energy E(t) are chosen such that the growth rate E’(t) does not
contain terms up to the formal order O(£?)

@ Assume that E(t) < Ey for some e-independent constant Eq > 0 for every t € [—10e ™3, 7oe 3.
There exist some constants €9 > 0 and Ky > 0 that depend on A such that

KoE(t) < Wl + | UIIZ + | V172 < 2KoE(2),

for each e € (0,0) and t € [—7oe 3, 7073
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Bounds on the approximation error in the time evolution
By differentiating E(t), we obtain

E'(t)= > WkRes/ + Uj«Res’ + VjRes)y + £ (—0cA+ €20 A) (Uj)* .
Jj,kez?

@ Cauchy-Schwartz and the previous estimates give the differential inequality:
IE'(t) < C (57/2E(t)1/2 + 63E(t)> 7

for some Cp > 0 as long as E(t) < Ey for some Ey > 0.
o By making the substitution E(t) := £Q(t)?, we obtain:

Q)< (77 +2)
o Gronwall’'s lemma yields for Q(0) < Gpel/?,

Q(t) < e2(1+ Go)exp (Co)

for each € € (0,e0) and t € [—7oe 3, 73]
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This completes the proof of the justification result for ¢ =0

Theorem (Hristov—P, 2022)

Let A € C°([0, o], H*(R?2)) be a solution to the KP-II equation with fixed integer s > 9, whose initial
data satisfies Ag € H*(R?), 85203 Ao € H*(R?), and

0502 (0202 Ag + A2) € HO(R?).

Then there exist £9 > 0 and Gy > 0 such that for every € € (0,eq), the unique solution of the 2D FPU
system satisfies for t € [0, 7oe 3]

|tm.n(t) — 2A(e(m — t),e%n,3t)]| 2 + IVinn(E) ez + | Wim,n(t) + 2A(e(m — t),e%n,e3t)|| 2 < e,
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Justification result for ¢ # 0

We need to control solutions of the original KP-Il equation with additional requirement:
8)?16\/(/42) c H56
However, this is impossible on R? (L. Molinet, J.-C. Saut, and N. Tzvetkov, 2002).

On other hand, working on torus T2 (Bourgain, 1993), if the mean value of A in X is independent of Y,
then 95303 A is controllable in H*(T?) and so is 950y (A2?).

As a result, we have justified the KP-1l equation for an arbitrary direction of propagation on T?, but not

on R? (P-Schneider, 2023). The justification result also extends to the line solitary waves (no transverse
modulations) for an arbitrary direction of propagation (the KdV equation).
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Case Study 3: The monoatomic FPU as a limit of a diatomic FPU

AW

AANOA

The Hamiltonian is

AV

1. 1,.
H=>" 501'2 + §€2qf+1 + V(gj+1 — Q) + V(Q — gj-1),

je2z

where ¢ is the mass ratio between light and heavy particles and V’(u) = u + u? will be used.
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Formal limit of small-mass ratio

Equations of motion:
Q= V(g1 — Q) — V'(Q —g-1),
2411 = V'(Qi2 — gj+1) — V'(gj41 — Q)),
where j € 27Z.

The small-mass limit € = 0 is satisfied if

_ Qe+ @
dji+1 = 5

for which the scalar FPU system arises:

o TR v QJ+2 QJ RV QJ - Qj72
o=y (B ) v (05"

K. Jayaprakash, Y. Starosvetsky, A. Vakakis, PRE 83 (2011) 11
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Solitary waves with and without exponentially small tails

Generally, the traveling solitary waves have oscillatory tails which are exponentially small in €.

A. Hoffman, J. D. Wright (2017); T. Faver, J. D. Wright (2018); C. Lustri, M. Porter (2018)
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Solitary waves with and without exponentially small tails

However, for a sequence of special values of {e,},en such that €, — 0 as n — oo, the traveling solitary
waves are fully localized without oscillatory tails.

K. Jayaprakash, Y. Starosvetsky, A. Vakakis (2011); C. Lustri, M. Porter (2018)

0

Asymptotic

Exact Correction

logo(Amplitude)
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Justification result

Theorem (P—Schneider, 2020)

Assume that Q* € CY([0, To], ¢?) is a suitable solution to the monoatomic FPU system

s oo Q2 — @ W Q — Q2
- (252) v (952)

There exist eg > 0 and Cy > 0 such that for all ¢ € (0,0) if [Q(0), g(0)] € 2 x ¢2 satisfy

sup |Q;(0) — Q7 (0)[ +

Jje2Z

1 * *
11(0) - 5(Q(0) + Qa0 < =
then the unique solution to the diatomic FPU system satisfies for every t € [0, To]:

sup |Q;(t) — Q7 () +
JE2Z

ga(t) — 5@ (D) + ;;2@))\ < G

D. Pelinovsky (McMaster University) FPU systems

31/33



Justification result

The approximation result is nontrivial since the right-hand side of the vector field is O(c~2):

Q= V(g1 — Q) - V'(Q —gi-1),
i1 =2 [V(Qjvz — qis1) — V'(gj31 — Q)]

1
Gj+1 = §(Qj + Qj12) + 0(e),

then Gronwall's inequlity gives only estimates on the time scale of O(g). The theorem ensures proximity
on the natural time scale of O(1) for which dynamics of the FPU system is nontrivial.

D. Pelinovsky (McMaster University) FPU systems 31/33



Justification result

@ Find the best coordinates to transform the problem.
@ Check that the reduced model formally arises in the appropriate limit of the transformed equations.
@ Define error terms to the leading-order terms and obtain residual equations.

© Control the error terms from the residual equations in suitable norms by using the energy
conservation, approximation estimates, and Gronwall inequality.

@ Check that the reduced models have smooth solutions which are compatible with the estimates.
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Proof of the justification result
1 Find the best coordinates to transform the problem.
We are using the coordnates:
1 1
U= 5(Qpr2 = Q) and - wjp1:= g1 — 5(Qjr2 + Q)-
It turns out that the same choice of coordinates was made in A. Hoffman, J. D. Wright (2017).
The diatomic FPU system is now written as

. 1 1
Ui+ V'(U)) + Wiy = EV/(UJ+2 + wjy3) + §V/(Uj—2 - wj-1),
2

2
. € 5
i1+ (24 )i (14 2U) = =5 V(Ujpa + wjys) + 5 V' (Uja = wia),
where V/(u) = u + u? is used for simplicity.
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Proof of the justification result
2 Check that the reduced model formally arises in the appropriate limit of the transformed equations.

We have rewritten the diatomic FPU system in the form:

- 1 1
Ui+ V'(U) + Wiy = 5V Uiz + wisa) + 5 V(U2 = wj—1),

2 52

. &
2 + (2 + eH)wia (L +2U)) = - V'(Ujy2 + wjts) + EV/(UH - wj_1).

If ¢ =0 and wjy; = 0, then the strain variable U; satisfies the monoatomic FPU lattice

- 1 1
Uy = 5V (Un2) + 5 V(U 2) = VI(U))
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Proof of the justification result
3 Define error terms to the leading-order terms and obtain residual equations.

We have rewritten the diatomic FPU system in the form:

1

) 1
Ui+ V'(U)) + Wiy = 5V Uiz + wisa) + 5 V(U2 = wj—1),

2 52

. &
2 + (2 + eH)wia (L +2U)) = - V'(Ujy2 + wjts) + EV/(UH - wj_1).

Let W satisfy

1 1
V= §V/(‘|’j+2) + EV/(‘UJ—2) = V().

The error terms are U — W and w. The residual terms are

2 2

ReSU’j =0, Resw,j = —% VI(\VJ'Jrg) + %V/(\Ujfz).
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Proof of the justification result
4 Control the residual terms in suitable norm.

The residual terms are controlled by

sup ||Resy |l < Ce?,
t€[0, To

as long as W € C([0, To], £?).
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Proof of the justification result
4 Control the error term in suitable norm from the energy conservation.

The error terms in the decomposition
U =V;+eR; and wji1 = evjqr.
are controlled from the energy function
1 : .
E(t) = > Z R? + R? + €2V + 2y + 2W(RE + 2v ) + 4eRyv]y,
Je2
as long as

1
sup sup |WV;(t)] < )
te[0, To) jE€2Z
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Proof of the justification result

4 Control the energy function from the balance equation and Gronwall's inequality.

%E(t) < GE()Y2 + GE(t) + GeE()2, te 0, To).

E(t)? < [E(0)Y? + (2G) 71y | €29, te |0, To).

as long as eE(t)Y2 < G/ Gs.
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Proof of the justification result
5 Check that the reduced models have smooth solutions which are compatible with the estimates.

We have assumed that W € C1(]0, To], ?) is a solution of

1 1
Vi =5 ViWi2) + 5 VI(V2) = VI(Y)
such that

1
sup sup |W;(t)] < 7
te[0, Tol j€2Z

Since the monoatomic system is Hamiltonian with the conserved energy

the constraint is satisfied at least for sufficiently small initial data.
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Summary

@ With three motivational examples, | have illustrated the justification analysis of obtaining nice
integrable systems as reduction of non-integrable FPU systems.

@ One of the main concerns of the justification algorithm is to verify that the reduced system admits
nice smooth solutions which would justify the reduction.

@ The other points to take home is that the approximation result should hold on times sufficiently
long to observe nontrivial dynamics of the reduced system.

@ The justification analysis relies on the choice of the energy function which always originates from
the energy conservation of the original FPU system. The energy function often suggests the choice
of the best coordinates for the justification result.
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