
Introduction Formalism Persistence of Solutions Stability of Periodic Travelling Waves Numerical Results Conclusions and Open Problems

Periodic Travelling Waves in Diatomic Granular
Chains

Matthew Betti

McMaster University

22 May 2012



Introduction Formalism Persistence of Solutions Stability of Periodic Travelling Waves Numerical Results Conclusions and Open Problems

Introduction

• Granular crystal chains are chains of densely packed, elastically
interacting particles.

• Popular area of study in the past decade.

• Recent work focuses on periodic travelling waves in granular
chains; said to be more relevant to physical experiments.

• Existence of periodic travelling waves was proved for a
homogeneous granular chain (a monomer) [James 2011].

• We show existence of periodic travelling waves and stability
results for chains of beads of alternating masses (a dimer).



Introduction Formalism Persistence of Solutions Stability of Periodic Travelling Waves Numerical Results Conclusions and Open Problems

The Model
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The discrete FPU (Fermi-Pasta-Ulam) lattice:{
mẍn = V ′(yn− xn)−V ′(xn− yn−1),
Mÿn = V ′(xn+1− yn)−V ′(yn− xn),

n ∈ Z,

where the interaction potential for spherical beads:

V (x) =
1

1 + α
|x |1+αH(−x), α =

3
2

where H is the step (Heaviside) function.
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We make the substitutions:

n ∈ Z : xn(t) = u2n−1(τ), yn(t) = εw2n(τ), t =
√

mτ

We transform FPU lattice:{
ü2n−1 = V ′(εw2n−u2n−1)−V ′(u2n−1− εw2n−2),
ẅ2n = εV ′(u2n+1− εw2n)− εV ′(εw2n−u2n−1),

n ∈ Z.

where ε2 = m
M .

Periodicity and travelling wave conditions:

u2n−1(τ) = u2n−1(τ + 2π), w2n(τ) = w2n(τ + 2π), τ ∈ R, n ∈ Z.

u2n+1(τ) = u2n−1(τ+2q), w2n+2(τ) = w2n(τ+2q), τ∈R, n∈Z,

where q ∈ [0,π] is a free parameter.
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Monomer Reduction

In the limit of equal mass ratio, ε = 1 we apply the reduction:

n ∈ Z : u2n−1(τ) = U2n−1(τ), w2n(τ) = U2n(τ).

This substitution, reduces the dimer system to the monomer system:

Ün = V ′(Un+1−Un)−V ′(Un−Un−1), n ∈ Z.

Existence of periodic travelling waves for the monomer system has
previously been proved [James 2011].
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Differential Advance-Delay Equation

We express travelling waves as:

u2n−1(τ) = u∗(τ + 2qn), w2n(τ) = w∗(τ + 2qn), τ ∈ R, n ∈ Z.

where (u∗,w∗) solve the differential advance-delay equations:{
ü∗(τ) = V ′(εw∗(τ)−u∗(τ))−V ′(u∗(τ)− εw∗(τ−2q)),
ẅ∗(τ) = εV ′(u∗(τ + 2q)− εw∗(τ))− εV ′(εw∗(τ)−u∗(τ)),

τ∈R.

Differential advance-delay systems are well-studied:

• Travelling waves in two-dimensional lattices [Cahn, Mallet-Paret,
van Vleck 1998].

• Delay population models [Allen 2006; Murray 2002].
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Anti-continuum Limit
Let ϕ be a solution of the nonlinear oscillator equation,

ϕ̈ = V ′(−ϕ)−V ′(ϕ) → ϕ̈ + |ϕ|α−1
ϕ = 0.

For a unique 2π-periodic solution we set:

ϕ(0) = 0, ϕ̇(0) > 0
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Figure: Phase portrait of the nonlinear oscillator in the (ϕ, ϕ̇)-plane.
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Special Solutions

For ε = 0, we can construct a limiting solution to the differential
advance-delay equations:

ε = 0 : u∗(τ) = ϕ(τ), w∗(τ) = 0, τ ∈ R,

Two solutions are known exactly:

q =
π

2
: u2n−1(τ) = ϕ(τ + nπ), w2n(τ) = 0

q = {0,π} : u2n−1(τ) =
ϕ(τ)

(1 + ε2)3 , w2n(τ) =
−εϕ(τ)

(1 + ε2)3 .

Goal: To consider persistence of the limiting solutions in ε.
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Spaces

For construction arguments based on the Implicit Function Theorem
we shall work in the following spaces for u and w :

H2
u =

{
u ∈ H2

per(0,2π) : u(−τ) =−u(τ), τ ∈ R
}
,

H2
w =

{
w ∈ H2

per(0,2π) : w(τ) =−w(−τ−2q)
}
.

We add these constraints to deal with the two symmetries of the
differential advance-delay equations: Translational symmetry in τ and
the shift of (u,w) in (ε,1).
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Theorem 1
Fix q ∈ [0,π]. There is a unique C1 continuation of 2π-periodic
travelling wave in ε. In other words, there is an ε0 > 0 such that for all
ε ∈ (0,ε0) there exist a positive constant C and a unique solution
(u∗,w∗) ∈ H2

u ×H2
w of the system of differential advance-delay

equations (4) such that

‖u∗−ϕ‖H2
per
≤ Cε

2, ‖w∗‖H2
per
≤ Cε.
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Proof

We prove the Theorem by way of the Implicit Function Theorem. We
are looking for zeroes of the nonlinear functions:{

fu(u,w ,ε) := d2u
dτ2 −Fu(u,w ,ε),

fw (u,w ,ε) := d2w
dτ2 −Fw (u,w ,ε).

where{
Fu(u(τ),w(τ),ε) := V ′(εw(τ)−u(τ))−V ′(u(τ)− εw(τ−2q)),
Fw (u(τ),w(τ),ε) := εV ′(u(τ + 2q)− εw(τ))− εV ′(εw(τ)−u(τ)),
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fu and fw are C1 maps since V is C2.

At (ϕ,0,0), (fu, fw ) = (0,0).

The Jacobian operator[
Dufu Dufw
Dw fu Dw fw

]
(u,w ,ε)=(ϕ,0,0)

=

[
d2

dτ2 + α|ϕ|α−1 0
0 d2

dτ2

]
=

[
L 0
0 L0

]
is invertible in the constrained spaces since L and L0 have
zero-dimensional kernels in H2

u and H2
w respectively.

Then, the Implicit Function Theorem can be applied.
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Linearization

We use the linearization of the dimer lattice around the travelling
waves in order to analyze their stability:

ü2n−1 = V ′′(εw∗(τ + 2qn)−u∗(τ + 2qn))(εw2n−u2n−1)
−V ′′(u∗(τ + 2qn)− εw∗(τ + 2qn−2q))(u2n−1− εw2n−2),

ẅ2n = εV ′′(u∗(τ + 2qn + 2q)− εw∗(τ + 2qn))(u2n+1− εw2n)
− εV ′′(εw∗(τ + 2qn)−u∗(τ + 2qn))(εw2n−u2n−1),

We use Floquet Theory for the chain of second-order ODEs:

u(τ + 2π) = M u(τ), τ ∈ R,

where u := [· · · ,w2n−2,u2n−1,w2n,u2n+1, · · · ] and M is the
monodromy operator.
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Eigenvalues of the monodromy operator, M are found via the
substitution:

u2n−1(τ) = U2n−1(τ)eλτ, w2n(τ) = W2n(τ)eλτ, τ ∈ R,

where (U2n−1,W2n) are 2π-periodic functions of τ.
Admissible λ are called the characteristic exponents. They define
Floquet multipliers µ:

µ = e2πλ
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Theorem 2
Fix q = πm

N for some positive integers m and N such that m ≤ N. Let
(u∗,w∗) ∈ H2

u ×H2
w be defined by Theorem 1 for sufficiently small

positive ε. Consider the linear eigenvalue problem subject to
2mN-periodic boundary conditions. There is a ε0 > 0 such that, for
every ε ∈ (0,ε0), there exists q0(ε) ∈

(
0, π

2

)
such that for all

q ∈ (0,q0(ε)) and q ∈ (π−q0(ε),π], no values of λ with Re(λ) 6= 0
exist, whereas for q ∈ (q0(ε),π−q0(ε)), there exist some values of λ

with Re(λ) > 0.
In other words,

0 < q < q0, π−q0 < q < π ⇒ stable
q0 < q < π−q ⇒ unstable
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We use a discrete Fourier transform on perturbation expansions of
linearized equations using our substitution and compute the
characteristic polynomial:

D(Λ;θ) = K Λ4 +4Λ2(M1 +KM2 +L1L2)sin2(θ)+16M1M2 sin4(θ) = 0.

where

K =− 4π2

T ′(E0)
, M2 =

2
πT ′(E0)(ϕ̇(0))2 , L1 = 2πL2 =

2(2π−T ′(E0)(ϕ̇(0))2)

T ′(E0)ϕ̇(0)
,

and

M1 =−2
π

(ϕ̇(0))2 + I(q),

where

I(q) = I(π−q) :=−
∫

π

π−2q
ϕ̈(τ)ϕ̈(τ + 2q)dτ, q ∈

[
0,

π

2

]
.
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To classify the nonzero roots of the characteristic polynomial, we
define

Γ := M1 + KM2 + L1L2, ∆ := 4KM1M2.

The two pairs of roots are determined in the following table.

Coefficients Roots
∆ < 0 Λ2

1 > 0, Λ2
2 < 0

0 < ∆≤ Γ2, Γ > 0 Λ2
1 < 0, Λ2

2 < 0
0 < ∆≤ Γ2, Γ < 0 Λ2

1 > 0, Λ2
2 > 0

∆ > Γ2 Re(Λ2
1) > 0, Re(Λ2

2) < 0
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Figure: Coefficients Γ (left) and ∆ (right) versus q.

We can show analytically that Γ > 0 and ∆≤ Γ2. The quantity ∆
changes sign at q0 ≈ 0.915.

0 < q < q0, π−q0 < q < π ⇒ Λ2
1,Λ

2
2 < 0

q0 < q < π−q ⇒ Λ2
1 > 0, Λ2

2 < 0.
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Numerical Results

We close the infinite chain of beads into a chain of 2N (i.e. q = π

N )
beads with periodic boundary conditions:{

ü2n−1(t) = (εw2n(t)−u2n−1(t))α
+− (u2n−1(t)− εw2n−2(t))α

+,
ẅ2n(t) = ε(u2n−1(t)− εw2n(t))α

+− ε(εw2n(t)−u2n+1(t))α
+,

1≤ n ≤ N,

with

u−1 = u2N−1, u2N+1 = u1, w0 = w2N , w2N+2 = w2.

We use the shooting method with 2N shooting parameters to
approximate solutions.
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Figure: Travelling wave solutions for q = π

2 : the solution of the dimer chain
continued from ε = 0 to ε = 1: branch 1 (top right), branch 2 (bottom left),
and branch 2’ (bottom right).
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Figure: Real (left) and imaginary (right) parts of the characteristic exponents
λ versus ε for q = π

2 for branch 1 (top) and branch 2 (bottom).
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Figure: Travelling wave solutions for q = π

3 : the solution of branch 1 is
continued from ε = 0 to ε = 1 (top right) and the solution of branch 2 is
continued from ε = 1 (bottom left) to ε = 0.985 (bottom right).
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Figure: Real (left) and imaginary (right) parts of the characteristic exponents
λ versus ε for q = π

3 for branch 1 (top) and branch 2 (bottom).
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Recall that branch 1 is stable for 0 < q < q0 ≈ 0.915.
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Figure: Imaginary parts of the characteristic exponents λ versus ε for q = π

5
(left) and q = π

6 (right). The real part of all the exponents is zero.
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Conclusions

• We have shown that the limiting periodic waves are all uniquely
continued from the anti-continuum limit for small mass ratio
parameters.

• We are able to show that periodic waves with wavelengths larger
than a certain critical value are spectrally stable for small mass
ratios.

• We have used numerical techniques to show that for larger
wavelengths the stability of these periodic travelling waves
persists all the way to the limit of equal mass ratio.
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Open Problems

• The nature of the bifurcations where Branch 2 terminates at
ε∗ ∈ (0,1) needs to be clarified for q = π

3 .

• We have been unsuccessful in our attempts to find another
solution branch nearby for ε ' ε∗.

• We would like to understand the hidden symmetry which explains
why coalescent eigenvalues remain stable for q ≤ π

5 .
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Thank you!
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