Approximations of the lattice dynamics

Amjad Khan

Supervisor: Dr. Dmitry Pelinovsky

McMaster University
Department of Mathematics and Statistics

April 21, 2015

Overview

- Introduction
 - Motivation
- Properties of the gKDV equation
 - Global existence in $H^1(\mathbb{R})$ (p=2,3,4,5).
 - Integrable cases (p = 2, 3)
 - Critical gKDV
- 3 Approximations of the Fermi-Pasta-Ulam lattice dynamics
 - Approximation on standard time scale
- Extension of time scale
 - Integrable gKDV (p=2,3)
 - Critical gKDV $(p \ge 5)$
- Conclusion

Introduction

The Fermi-Pasta-Ulam (PFU) lattice is written in the form

$$\ddot{u}_n = V'(u_{n+1}) - 2V'(u_n) + V'(u_{n-1}), \quad n \in \mathbb{Z}.$$
(1)

We consider V(u) in the form

$$V(u) = \frac{1}{2}u^2 + \frac{\epsilon^2}{p+1}u^{p+1},\tag{2}$$

where $p \geq 2, \ p \in \mathbb{N}$. The equation (1) can be re-written as

$$\ddot{u}_n = u_{n+1} - 2u_n + u_{n-1} + \epsilon^2 (u_{n+1}^p - 2u_n^p + u_{n-1}^p), \quad n \in \mathbb{Z}.$$
 (3)

Introduction [Cont.]

Using the leading order solution

$$u_n(t) = W\left(\epsilon(n-t), \epsilon^3 t\right) = W\left(\xi, \tau\right), \ \xi = \epsilon(n-t), \ \text{ and } \ \tau = \epsilon^3 t,$$

FPU lattice equation can be written as a gKDV equation (4)

$$2W_{\tau} + \frac{1}{12}W_{\xi\xi\xi} + (W^p)_{\xi} = 0.$$
 (4)

where $p \geq 2, \ p \in \mathbb{N}$.

- Subcritical if p = 2, 3, 4
- ightharpoonup Critical if p=5
- ▶ Supercritical if $p \ge 6$.

Introduction [Cont.]

Using the leading order solution

$$u_n(t) = W\left(\epsilon(n-t), \epsilon^3 t\right) = W\left(\xi, \tau\right), \ \xi = \epsilon(n-t), \ \text{ and } \ \tau = \epsilon^3 t,$$

FPU lattice equation can be written as a gKDV equation (4)

$$2W_{\tau} + \frac{1}{12}W_{\xi\xi\xi} + (W^p)_{\xi} = 0.$$
 (4)

where $p \geq 2, \ p \in \mathbb{N}$.

- ightharpoonup Subcritical if p=2,3,4
- ▶ Critical if p = 5
- ▶ Supercritical if $p \ge 6$.

Introduction [Cont.]

Using the leading order solution

$$u_n(t) = W\left(\epsilon(n-t), \epsilon^3 t\right) = W\left(\xi, \tau\right), \ \xi = \epsilon(n-t), \ \text{ and } \ \tau = \epsilon^3 t,$$

FPU lattice equation can be written as a gKDV equation (4)

$$2W_{\tau} + \frac{1}{12}W_{\xi\xi\xi} + (W^p)_{\xi} = 0.$$
 (4)

where $p \geq 2, \ p \in \mathbb{N}$.

- ightharpoonup Subcritical if p=2,3,4
- ▶ Critical if p = 5
- ▶ Supercritical if $p \ge 6$.

Outline

- Introduction
 - Motivation
- Properties of the gKDV equation
- 3 Approximations of the Fermi-Pasta-Ulam lattice dynamics
- 4 Extension of time scale
- Conclusion

Motivation

The approximation of the traveling waves in the FPU lattice by the KDV type equation leads to a popular belief that *The nonlinear stability of the FPU traveling waves resembles the orbital stability of the KDV solitary waves*.

- ► There are some nonlinear potentials which may lead to the KDV type equations whose traveling waves are not stable for all amplitudes.
- If we consider the nonlinear potential (2) we arrive at the generalized KDV equation (4), which is known to have orbitally stable traveling waves for p=2,3,4 (subcritical case) and orbitally unstable traveling waves for $p\geq 5$ (critical and supercritical case).
- ► This leads to the question.....

Motivation

The approximation of the traveling waves in the FPU lattice by the KDV type equation leads to a popular belief that *The nonlinear stability of the FPU traveling waves resembles the orbital stability of the KDV solitary waves*.

- ► There are some nonlinear potentials which may lead to the KDV type equations whose traveling waves are not stable for all amplitudes.
- If we consider the nonlinear potential (2) we arrive at the generalized KDV equation (4), which is known to have orbitally stable traveling waves for p=2,3,4 (subcritical case) and orbitally unstable traveling waves for $p\geq 5$ (critical and supercritical case).
- ► This leads to the question.....

Motivation

The approximation of the traveling waves in the FPU lattice by the KDV type equation leads to a popular belief that *The nonlinear stability of the FPU traveling waves resembles the orbital stability of the KDV solitary waves*.

- ► There are some nonlinear potentials which may lead to the KDV type equations whose traveling waves are not stable for all amplitudes.
- If we consider the nonlinear potential (2) we arrive at the generalized KDV equation (4), which is known to have orbitally stable traveling waves for p=2,3,4 (subcritical case) and orbitally unstable traveling waves for $p\geq 5$ (critical and supercritical case).
- ▶ This leads to the question.....

Motivation [Cont.]

▶ Are the traveling waves of the FPU lattice (3) stable, if the traveling waves of the gKDV equation (4) are orbitally stable?

Properties of the gKDV equation

The gKDV equation admits the solitary wave solution

$$W = (c(p+1))^{\frac{1}{p-1}} \operatorname{sech}^{\frac{2}{p-1}} \left(\sqrt{6c(p-1)(\eta+B)} \right).$$
 (5)

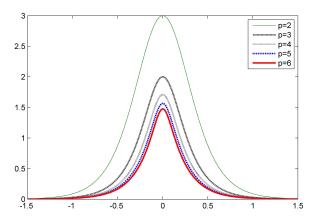


Figure : The solitary wave W for p=2,3,4,5,6 and B=0.

- ▶ (locally) T. Kato (1981) in $H^s(\mathbb{R})$ for any $p \geq 2$ and $s > \frac{3}{2}$.
- ▶ (locally) C. Kenig, G. Ponce and L. Vega (1991,1993) in $H^s(\mathbb{R})$ with $s \geq \frac{3}{4}$ for $p=2, \ s \geq \frac{1}{4}$ for $p=3, \ s \geq \frac{1}{12}$ for p=4, and $s \geq \frac{p-5}{2(p-1)}$ for $p \geq 5$.
- (globally) C. Kenig, G. Ponce and L. Vega (1991,1993) in $H^s(\mathbb{R})$ with $s \geq s_p := \frac{p-5}{2(p-1)}$, under the assumption of smallness of the $H^{s_p}(\mathbb{R})$ -norm.
- ▶ (globally) Colliander et al (2003) with p=2 in $H^s(\mathbb{R})$ for $s>-\frac{3}{4}$, with p=3 in $H^s(\mathbb{R})$ for $s>\frac{1}{4}$.

- ▶ (locally) T. Kato (1981) in $H^s(\mathbb{R})$ for any $p \geq 2$ and $s > \frac{3}{2}$.
- ▶ (locally) C. Kenig, G. Ponce and L. Vega (1991,1993) in $H^s(\mathbb{R})$ with $s\geq \frac{3}{4}$ for p=2, $s\geq \frac{1}{4}$ for p=3, $s\geq \frac{1}{12}$ for p=4, and $s\geq \frac{p-5}{2(p-1)}$ for $p\geq 5.$
- (globally) C. Kenig, G. Ponce and L. Vega (1991,1993) in $H^s(\mathbb{R})$ with $s \geq s_p := \frac{p-5}{2(p-1)}$, under the assumption of smallness of the $H^{s_p}(\mathbb{R})$ -norm.
- ▶ (globally) Colliander et al (2003) with p=2 in $H^s(\mathbb{R})$ for $s>-\frac{3}{4}$, with p=3 in $H^s(\mathbb{R})$ for $s>\frac{1}{4}$.

- ▶ (locally) T. Kato (1981) in $H^s(\mathbb{R})$ for any $p \geq 2$ and $s > \frac{3}{2}$.
- ▶ (locally) C. Kenig, G. Ponce and L. Vega (1991,1993) in $H^s(\mathbb{R})$ with $s \geq \frac{3}{4}$ for $p=2, \, s \geq \frac{1}{4}$ for $p=3, \, s \geq \frac{1}{12}$ for p=4, and $s \geq \frac{p-5}{2(p-1)}$ for $p \geq 5$.
- (globally) C. Kenig, G. Ponce and L. Vega (1991,1993) in $H^s(\mathbb{R})$ with $s \geq s_p := \frac{p-5}{2(p-1)}$, under the assumption of smallness of the $H^{s_p}(\mathbb{R})$ -norm.
- ▶ (globally) Colliander et al (2003) with p=2 in $H^s(\mathbb{R})$ for $s>-\frac{3}{4}$, with p=3 in $H^s(\mathbb{R})$ for $s>\frac{1}{4}$.

- ▶ (locally) T. Kato (1981) in $H^s(\mathbb{R})$ for any $p \geq 2$ and $s > \frac{3}{2}$.
- ▶ (locally) C. Kenig, G. Ponce and L. Vega (1991,1993) in $H^s(\mathbb{R})$ with $s \geq \frac{3}{4}$ for $p=2, \, s \geq \frac{1}{4}$ for $p=3, \, s \geq \frac{1}{12}$ for p=4, and $s \geq \frac{p-5}{2(p-1)}$ for $p \geq 5$.
- (globally) C. Kenig, G. Ponce and L. Vega (1991,1993) in $H^s(\mathbb{R})$ with $s \geq s_p := \frac{p-5}{2(p-1)}$, under the assumption of smallness of the $H^{s_p}(\mathbb{R})$ -norm.
- ▶ (globally) Colliander et al (2003) with p=2 in $H^s(\mathbb{R})$ for $s>-\frac{3}{4}$, with p=3 in $H^s(\mathbb{R})$ for $s>\frac{1}{4}$.

Outline

- Introduction
- Properties of the gKDV equation
 - Global existence in $H^1(\mathbb{R})$ (p=2,3,4,5).
 - Integrable cases (p = 2, 3)
 - Critical gKDV
- 3 Approximations of the Fermi-Pasta-Ulam lattice dynamics
- Extension of time scale
- Conclusion

Theorem 1

The Cauchy problem related to the generalized KDV equation (4) is globally well posed in $H^1(\mathbb{R})$, for $2 \le p \le 4$. Further more for p=5 the gKDV equation (4) is well posed in $H^1(\mathbb{R})$, with small $L^2(\mathbb{R})$ initial data.

Outline

- Introduction
- Properties of the gKDV equation
 - Global existence in $H^1(\mathbb{R})$ (p=2,3,4,5).
 - Integrable cases (p = 2, 3)
 - Critical gKDV
- Approximations of the Fermi-Pasta-Ulam lattice dynamics
- 4 Extension of time scale
- Conclusion

The generalized KDV equation (4) reduces to

- ▶ The integrable KDV equation and mKDV equation for p=2,3 respectively.
- ► The integrable KDV and mKDV equations possess an infinite number of conserved quantities [R.M. Miura, C.S. Gardner, and M.D. Kruskal(1968), J. Bona, Y. Liu and N. V. Nguyen(2004)].

Theorem 2

There exists a unique global solution to the KDV equation and mKDV equation in $H^s(\mathbb{R})$ for every $s \in \mathbb{N}$. In particular, there exists a constant C_s such that for every $t \in \mathbb{R}$,

 $||W||_{H^s(\mathbb{R})} \leq C_s$.

The generalized KDV equation (4) reduces to

- ▶ The integrable KDV equation and mKDV equation for p=2,3 respectively.
- ► The integrable KDV and mKDV equations possess an infinite number of conserved quantities [R.M. Miura, C.S. Gardner, and M.D. Kruskal(1968), J. Bona, Y. Liu and N. V. Nguyen(2004)].

Theorem 2

There exists a unique global solution to the KDV equation and mKDV equation in $H^s(\mathbb{R})$ for every $s\in\mathbb{N}$. In particular, there exists a constant C_s such that for every $t\in\mathbb{R},$

 $||W||_{H^s(\mathbb{R})} \le C_s.$

The generalized KDV equation (4) reduces to

- ▶ The integrable KDV equation and mKDV equation for p=2,3 respectively.
- ► The integrable KDV and mKDV equations possess an infinite number of conserved quantities [R.M. Miura, C.S. Gardner, and M.D. Kruskal(1968), J. Bona, Y. Liu and N. V. Nguyen(2004)].

Theorem 2

There exists a unique global solution to the KDV equation and mKDV equation in $H^s(\mathbb{R})$ for every $s \in \mathbb{N}$. In particular, there exists a constant C_s such that for every $t \in \mathbb{R}$,

$$||W||_{H^s(\mathbb{R})} \le C_s.$$

The generalized KDV equation (4) reduces to

- ▶ The integrable KDV equation and mKDV equation for p=2,3 respectively.
- ► The integrable KDV and mKDV equations possess an infinite number of conserved quantities [R.M. Miura, C.S. Gardner, and M.D. Kruskal(1968), J. Bona, Y. Liu and N. V. Nguyen(2004)].

Theorem 2

There exists a unique global solution to the KDV equation and mKDV equation in $H^s(\mathbb{R})$ for every $s \in \mathbb{N}$. In particular, there exists a constant C_s such that for every $t \in \mathbb{R}$,

$$||W||_{H^s(\mathbb{R})} \le C_s.$$

Outline

- Introduction
- Properties of the gKDV equation
 - Global existence in $H^1(\mathbb{R})$ (p=2,3,4,5).
 - Integrable cases (p = 2, 3)
 - Critical gKDV
- 3 Approximations of the Fermi-Pasta-Ulam lattice dynamics
- Extension of time scale
- Conclusion

- ▶ V. Martel, F. Merle and P. Raphaël (2000, 2001, 2002, 2004) showed in a series of papers blow up in the solution W to the critical gKDV equation (4) with p=5 in finite time.
- ▶ Theorem 1 excludes blow up for p=5 if the initial data is small in the $L^2(\mathbb{R})$ norm.
- C. Kenig, G. Ponce, and L. Vega (1993) proved a better result for small-norm initial data.

Theorem 3

Let p=5. There exists $\delta>0$ such that for any initial $W_0\in L^2(\mathbb{R})$ with

$$||W_0||_{L^2} < \delta,$$

there exists a unique strong solution W of the Cauchy problem related to the gKDV equation (4) satisfying

$$W \in C(\mathbb{R}; L^2(\mathbb{R})) \cap L^{\infty}(\mathbb{R}; L^2(\mathbb{R})),$$

and

$$\sup_{\xi} \left\| \frac{\partial W}{\partial \xi} \right\|_{L_{x}^{2}} \le D < \infty. \tag{6}$$

Theorem 4

For p=5, the upper bound for the $H^s(\mathbb{R})$ norm of the solution W of the gKDV equation (4) is given by

$$||W||_{H^s(\mathbb{R})} \le c_s e^{k_s \int_0^\tau ||W_\xi||_{L^\infty} d\tau},\tag{7}$$

where $c_s > 0$ and $k_s > 0$ are constants.

The FPU equation (3) can be written as the FPU system,

$$\begin{cases} \dot{u}_n = q_{n+1} - q_n, \\ \dot{q}_n = u_n - u_{n-1} + \epsilon^2 \left(u_n^p - u_{n-1}^p \right), & n \in \mathbb{Z}. \end{cases}$$
 (8)

Any solution $(u,q) \in C^1(\mathbb{R},l^2(\mathbb{Z}))$ to the FPU system (8) provides a $C^2(\mathbb{R},l^2(\mathbb{Z}))$ solution u to the FPU equation (3). The FPU lattice system (8) admit the conserved energy

$$H := \frac{1}{2} \sum_{n \in \mathbb{Z}} \left(q_n^2 + u_n^2 + \frac{2\epsilon^2}{p+1} u_n^{p+1} \right). \tag{9}$$

Outline

- Introduction
- 2 Properties of the gKDV equation
- 3 Approximations of the Fermi-Pasta-Ulam lattice dynamics
 - Approximation on standard time scale
- 4 Extension of time scale
- Conclusion

Theorem 5

Let $W \in C([-\tau_0, \tau_0], H^6(\mathbb{R}))$ be a solution to the gKDV equation (4) for any $\tau_0 > 0$. Then there exists positive constants ϵ_0 and C_0 such that, for all $\epsilon \in (0, \epsilon_0)$, when initial data $(u_{in,\epsilon}, q_{in,\epsilon}) \in l^2(\mathbb{Z})$ are given such that

$$||u_{in,\epsilon} - W(\epsilon \cdot, 0)||_{l^2} + ||q_{in,\epsilon} - P_{\epsilon}(\epsilon \cdot, 0)||_{l^2} \le \epsilon^{\frac{3}{2}}, \tag{10}$$

the unique solution $(u_{\epsilon},q_{\epsilon})$ to the FPU lattice equation (8) with initial data $(u_{in,\epsilon},q_{in,\epsilon})$ belongs to $C^1([-\tau_0\epsilon^{-3},\tau_0\epsilon^{-3}],l^2(\mathbb{Z}))$ and satisfy for every $t\in [-\tau_0\epsilon^{-3},\tau_0\epsilon^{-3}]$:

$$||u_{\epsilon}(t) - W(\epsilon(\cdot - t), \epsilon^3 t)||_{l^2} + ||q_{\epsilon}(t) - P_{\epsilon}(\epsilon(\cdot - t), \epsilon^3 t)||_{l^2} \le C_0 \epsilon^{\frac{3}{2}}.$$
 (11)

4D > 4A > 4E > 4E > E 990

Proof

▶ Decompose the solution

$$u_n(t) = W(\epsilon(n-t), \epsilon^3 t) + \mathcal{U}_n(t), \quad q_n = P_{\epsilon}(\epsilon(n-t), \epsilon^3 t) + \mathcal{P}_n(t), (12)$$

where $W(\xi,\tau)$ is a smooth solution to the gKDV equation (4)and P_ϵ is constructed in such a way that (W,P_ϵ) solves the first equation in system (8) up to the $\mathcal{O}(\epsilon^4)$ terms.

▶ Substituting the decomposition (12) into the FPU lattice system (8), we obtain the evolutionary problem for the error terms as

Proof

▶ Decompose the solution

$$u_n(t) = W(\epsilon(n-t), \epsilon^3 t) + \mathcal{U}_n(t), \quad q_n = P_{\epsilon}(\epsilon(n-t), \epsilon^3 t) + \mathcal{P}_n(t), (12)$$

where $W(\xi,\tau)$ is a smooth solution to the gKDV equation (4)and P_ϵ is constructed in such a way that (W,P_ϵ) solves the first equation in system (8) up to the $\mathcal{O}(\epsilon^4)$ terms.

▶ Substituting the decomposition (12) into the FPU lattice system (8), we obtain the evolutionary problem for the error terms as

Proof

$$\begin{cases} \dot{\mathcal{U}}_n = \mathcal{P}_{n+1} - \mathcal{P}_n + Res_n^1, \\ \dot{\mathcal{P}}_n = \mathcal{U}_n - \mathcal{U}_{n-1} + p\epsilon^2 \left(W(\epsilon(n-t), \epsilon^3 t))^{p-1} \mathcal{U}_n \\ - W(\epsilon(n-1-t), \epsilon^3 t)^{p-1} \mathcal{U}_{n-1} \right) + \mathcal{R}_n(W, \mathcal{U})(t) + Res_n^2(t), \end{cases}$$

These residual terms can be bounded as

$$||Res^1||_{l^2} + ||Res^2||_{l^2} \le C_W \epsilon^{\frac{9}{2}},$$
 (13)

and

$$||\mathcal{R}(W,\mathcal{U})||_{l^2} \le \epsilon^2 C_{W,\mathcal{U}} ||\mathcal{U}||_{l^2}^2, \tag{14}$$

where C_W and $C_{W,\mathcal{U}}$ are constant proportional to $||W||_{H^6} + ||W||_{H^6}^p$ and $||W||_{H^6}^{p-2} + ||\mathcal{U}||_{l^2}^{p-2}$ respectively.

Proof

▶ Let us define for a fixed C > 0:

$$\mathcal{T}_C := \sup \left\{ T \in [0, \tau_0 \epsilon^{-3}] : \quad \mathcal{Q}(t) \le C \epsilon, \ t \in [-T, T] \right\}. \tag{15}$$

 \triangleright $Q = E^{\frac{1}{2}}$, and E is defined as:

$$E(t) := \frac{1}{2} \sum_{n \in \mathbb{Z}} \left[\mathcal{P}_n^2 + \mathcal{U}_n^2 + \epsilon^2 p W(\epsilon(n-t), \epsilon^3 t)^{p-1} \mathcal{U}_n^2(t) \right]. \tag{16}$$

▶ For $\epsilon_0 < \min\left(1, ||2pW(\epsilon(\cdot - t))^{p-1}||_{L^\infty}^{-\frac{1}{2}}\right)$, and $\epsilon \in (0, \epsilon_0)$, we have

$$||\mathcal{P}||_{l^2}^2 + ||\mathcal{U}||_{l^2}^2 \le 4E(t), \ t \in (0, \mathcal{T}_C).$$
 (17)

Proof

 \blacktriangleright Let us define for a fixed C > 0:

$$\mathcal{T}_C := \sup \left\{ T \in [0, \tau_0 \epsilon^{-3}] : \quad \mathcal{Q}(t) \le C \epsilon, \ t \in [-T, T] \right\}. \tag{15}$$

 $ightharpoonup \mathcal{Q} = E^{\frac{1}{2}}, \text{ and } E \text{ is defined as:}$

$$E(t) := \frac{1}{2} \sum_{n \in \mathbb{Z}} \left[\mathcal{P}_n^2 + \mathcal{U}_n^2 + \epsilon^2 p W(\epsilon(n-t), \epsilon^3 t)^{p-1} \mathcal{U}_n^2(t) \right]. \tag{16}$$

$$||\mathcal{P}||_{l^2}^2 + ||\mathcal{U}||_{l^2}^2 \le 4E(t), \ t \in (0, \mathcal{T}_C).$$
 (17)

Proof

▶ Let us define for a fixed C > 0:

$$\mathcal{T}_C := \sup \left\{ T \in [0, \tau_0 \epsilon^{-3}] : \quad \mathcal{Q}(t) \le C \epsilon, \ t \in [-T, T] \right\}. \tag{15}$$

 $ightharpoonup \mathcal{Q} = E^{\frac{1}{2}}$, and E is defined as:

$$E(t) := \frac{1}{2} \sum_{n \in \mathbb{Z}} \left[\mathcal{P}_n^2 + \mathcal{U}_n^2 + \epsilon^2 p W(\epsilon(n-t), \epsilon^3 t)^{p-1} \mathcal{U}_n^2(t) \right]. \tag{16}$$

▶ For $\epsilon_0 < \min\left(1, ||2pW(\epsilon(\cdot - t))^{p-1}||_{L^\infty}^{-\frac{1}{2}}\right)$, and $\epsilon \in (0, \epsilon_0)$, we have

$$||\mathcal{P}||_{l^2}^2 + ||\mathcal{U}||_{l^2}^2 \le 4E(t), \ t \in (0, \mathcal{T}_C).$$
 (17)

Proof

▶ Differentiating E and then choosing $Q = E^{\frac{1}{2}}$, we arrive at

$$\left| \frac{d\mathcal{Q}}{dt} \right| \leq \hat{C}_{W,\mathcal{U}} \left(\epsilon^{\frac{9}{2}} + (1+C)\epsilon^{3}\mathcal{Q} \right),$$

Using the Gronwall's inequality, we arrive at

$$Q(t) \leq \left(C_0 + \hat{C}_{W,\mathcal{U}}\tau_0\right)\epsilon^{\frac{3}{2}}e^{(1+C)\hat{C}_{W,\mathcal{U}}\tau_0}, \ t \in (-\mathcal{T}_C, \mathcal{T}_C).$$
 (18)

▶ Finally, choose ϵ_0 sufficiently small such that the bound $\mathcal{Q}(t) \leq C \epsilon$ is preserved.

Proof

▶ Differentiating E and then choosing $Q = E^{\frac{1}{2}}$, we arrive at

$$\left| \frac{d\mathcal{Q}}{dt} \right| \leq \hat{C}_{W,\mathcal{U}} \left(\epsilon^{\frac{9}{2}} + (1+C)\epsilon^{3}\mathcal{Q} \right),$$

Using the Gronwall's inequality, we arrive at

$$\mathcal{Q}(t) \leq \left(C_0 + \hat{C}_{W,\mathcal{U}}\tau_0\right) \epsilon^{\frac{3}{2}} e^{(1+C)\hat{C}_{W,\mathcal{U}}\tau_0}, \quad t \in (-\mathcal{T}_C, \mathcal{T}_C).$$
 (18)

▶ Finally, choose ϵ_0 sufficiently small such that the bound $\mathcal{Q}(t) \leq C \epsilon$ is preserved.

Proof

▶ Differentiating E and then choosing $Q = E^{\frac{1}{2}}$, we arrive at

$$\left| \frac{d\mathcal{Q}}{dt} \right| \leq \hat{C}_{W,\mathcal{U}} \left(\epsilon^{\frac{9}{2}} + (1+C)\epsilon^3 \mathcal{Q} \right),$$

Using the Gronwall's inequality, we arrive at

$$\mathcal{Q}(t) \leq \left(C_0 + \hat{C}_{W,\mathcal{U}}\tau_0\right)\epsilon^{\frac{3}{2}}e^{(1+C)\hat{C}_{W,\mathcal{U}}\tau_0}, \quad t \in (-\mathcal{T}_C, \mathcal{T}_C).$$
(18)

▶ Finally, choose ϵ_0 sufficiently small such that the bound $\mathcal{Q}(t) \leq C \, \epsilon$ is preserved.

Outline

- Introduction
- 2 Properties of the gKDV equation
- 3 Approximations of the Fermi-Pasta-Ulam lattice dynamics
- 4 Extension of time scale
 - Integrable gKDV (p=2,3)
 - Critical gKDV $(p \ge 5)$
- 6 Conclusion

From Theorem 2, we know that there exists a constant c_s , such that

$$\delta = \sup_{\tau \in [-\tau_0, \tau_0]} ||W(t)||_{H^6} \le c_s.$$
(19)

Theorem 6

Let $W \in C(\mathbb{R}, H^6(\mathbb{R}))$ be a global solution to the gKDV equation (4) with p=2,3. For fixed $r \in \left(0,\frac{1}{2}\right)$, there exists positive constants ϵ_0 and C_0 such that, for all $\epsilon \in (0,\epsilon_0)$, when initial data $(u_{in,\epsilon},q_{in,\epsilon}) \in l^2(\mathbb{Z})$ are given such that

$$||u_{in,\epsilon} - W(\epsilon \cdot, 0)||_{l^2} + ||q_{in,\epsilon} - P_{\epsilon}(\epsilon \cdot, 0)||_{l^2} \le \epsilon^{\frac{3}{2}}, \tag{20}$$

the unique solution (u_ϵ,q_ϵ) to the FPU lattice equation (8) with initial data $(u_{in,\epsilon},q_{in,\epsilon})$ belongs to $C^1\left(\left[-\frac{r|\log(\epsilon)|}{k_0}\epsilon^{-3},\,\frac{r|\log(\epsilon)|}{k_0}\epsilon^{-3}\right],l^2(\mathbb{Z})\right),$ where k_o is ϵ -independent and (u_ϵ,q_ϵ) satisfy

$$||u_{\epsilon}(t) - W(\epsilon(\cdot - t), \epsilon^{3}t)||_{l^{2}} + ||q_{\epsilon}(t) - P_{\epsilon}(\epsilon(\cdot - t), \epsilon^{3}t)||_{l^{2}} \leq C_{0}\epsilon^{\frac{3}{2} - r}, (21)$$

for every
$$t \in \left[-\frac{r|\log(\epsilon)|}{k_0}\epsilon^{-3}, \, \frac{r|\log(\epsilon)|}{k_0}\epsilon^{-3}\right]$$
 .

4 D > 4 D > 4 E > 4 E > E 99 C

Proof

▶ Following the same lines as in Theorem 5 and using equation (19), we arrive at

$$Q(t) \le \left(Q(0) + \frac{C_{\delta}}{k_0} \epsilon^{\frac{3}{2}}\right) e^{k_0 \tau_0(\epsilon)}. \tag{22}$$

▶ To achieve the required extension of time interval, we assume that

$$e^{k_0 \tau_0(\epsilon)} = \frac{\mu}{\epsilon^r},$$
 (23)

where μ is a fixed constant and so is $r \in (0, \frac{1}{2})$

► Finally, we arrive at

$$Q(t) \le C\epsilon^{\frac{3}{2}-r},\tag{24}$$

Proof

▶ Following the same lines as in Theorem 5 and using equation (19), we arrive at

$$Q(t) \le \left(Q(0) + \frac{C_{\delta}}{k_0} \epsilon^{\frac{3}{2}}\right) e^{k_0 \tau_0(\epsilon)}. \tag{22}$$

▶ To achieve the required extension of time interval, we assume that

$$e^{k_0 \tau_0(\epsilon)} = \frac{\mu}{\epsilon^r},\tag{23}$$

where μ is a fixed constant and so is $r \in \left(0, \frac{1}{2}\right)$.

► Finally, we arrive at

$$Q(t) \le C\epsilon^{\frac{3}{2}-r},\tag{24}$$

Proof

▶ Following the same lines as in Theorem 5 and using equation (19), we arrive at

$$Q(t) \le \left(Q(0) + \frac{C_{\delta}}{k_0} \epsilon^{\frac{3}{2}}\right) e^{k_0 \tau_0(\epsilon)}. \tag{22}$$

▶ To achieve the required extension of time interval, we assume that

$$e^{k_0 \tau_0(\epsilon)} = \frac{\mu}{\epsilon^r},\tag{23}$$

where μ is a fixed constant and so is $r \in \left(0, \frac{1}{2}\right)$.

Finally, we arrive at

$$Q(t) \le C\epsilon^{\frac{3}{2}-r},\tag{24}$$

Outline

- Introduction
- 2 Properties of the gKDV equation
- 3 Approximations of the Fermi-Pasta-Ulam lattice dynamics
- Extension of time scale
 - Integrable gKDV (p = 2, 3)
 - Critical gKDV $(p \ge 5)$
- Conclusion

Previous result

Let us assume that there exist C_s and k_s such that

$$\delta(\tau_0) = \sup_{\tau \in [-\tau_0, \tau_0]} ||W(\cdot, \tau)||_{H^6} \le C_s e^{k_s \tau_0}.$$
(25)

Theorem 7

Let $W \in C(\mathbb{R}, H^6(\mathbb{R}))$ be a global solution to the gKDV equation (4) for p=5. For fixed $r \in \left(0,\frac{1}{2}\right)$ there exist positive constants ϵ_0 and C_0 such that, for all $\epsilon \in (0,\epsilon_0)$, when initial data $(u_{in,\epsilon},q_{in,\epsilon}) \in l^2(\mathbb{Z})$ are given such that

$$||u_{in,\epsilon} - W(\epsilon \cdot, 0)||_{l^2} + ||q_{in,\epsilon} - P_{\epsilon}(\epsilon \cdot, 0)||_{l^2} \le \epsilon^{\frac{3}{2}}, \tag{26}$$

the unique solution (u_ϵ,q_ϵ) to the FPU lattice equation (8) with initial data $(u_{in,\epsilon},q_{in,\epsilon})$ belongs to

$$C^1\left(\left[-\frac{1}{2k_s(p-1)}\log(|\log(\epsilon)|)\epsilon^{-3}, \frac{1}{2k_s(p-1)}\log(|\log(\epsilon)|)\epsilon^{-3}\right], l^2(\mathbb{Z})\right)$$
, where k_s is ϵ -independent, and satisfy

$$||u_{\epsilon}(t) - W(\epsilon(\cdot - t), \epsilon^{3}t)||_{l^{2}} + ||q_{\epsilon}(t) - P_{\epsilon}(\epsilon(\cdot - t), \epsilon^{3}t)||_{l^{2}} \leq C_{0}\epsilon^{\frac{3}{2} - r}, (27)$$

$$\textit{for every } t \in \left[-\tfrac{1}{2k_s(p-1)} \log(|\log(\epsilon)|) \epsilon^{-3}, \tfrac{1}{2k_s(p-1)} \log(|\log(\epsilon)| \epsilon^{-3} \right].$$

Proof

► Following the same lines as in the Proof of Theorem 5 and using (25), we arrive at

$$Q(t) \le \left(Q(0) + \tilde{\tilde{C}}\epsilon^{\frac{3}{2}}\right) e^{\frac{C_s}{2(p-1)k_s}(e^{2(p-1)k_s\tau_0} - 1)}.$$
 (28)

▶ To achieve the required extension of the time interval, we assume that

$$e^{\frac{C_s}{2(p-1)k_s}(e^{2(p-1)k_s\tau_0}-1)} = \frac{\mu}{\epsilon^r},$$
 (29)

where μ is fixed and so is $r\in \left(0,rac{1}{2}
ight)$.

Finally, we arrive at

$$Q(t) \le C \,\epsilon^{\frac{3}{2}-r}.\tag{30}$$

Proof

► Following the same lines as in the Proof of Theorem 5 and using (25), we arrive at

$$Q(t) \le \left(Q(0) + \tilde{\tilde{C}}\epsilon^{\frac{3}{2}}\right) e^{\frac{C_s}{2(p-1)k_s}(e^{2(p-1)k_s\tau_0} - 1)}.$$
 (28)

▶ To achieve the required extension of the time interval, we assume that

$$e^{\frac{C_s}{2(p-1)k_s}(e^{2(p-1)k_s\tau_0}-1)} = \frac{\mu}{\epsilon^r},$$
 (29)

where μ is fixed and so is $r\in \left(0,rac{1}{2}
ight)$.

► Finally, we arrive at

$$Q(t) \le C \,\epsilon^{\frac{3}{2}-r}.\tag{30}$$

Proof

► Following the same lines as in the Proof of Theorem 5 and using (25), we arrive at

$$Q(t) \le \left(Q(0) + \tilde{\tilde{C}}\epsilon^{\frac{3}{2}}\right) e^{\frac{C_s}{2(p-1)k_s}\left(e^{2(p-1)k_s\tau_0} - 1\right)}.$$
 (28)

▶ To achieve the required extension of the time interval, we assume that

$$e^{\frac{C_s}{2(p-1)k_s}(e^{2(p-1)k_s\tau_0}-1)} = \frac{\mu}{\epsilon^r},\tag{29}$$

where μ is fixed and so is $r \in (0, \frac{1}{2})$.

Finally, we arrive at

$$Q(t) \le C \,\epsilon^{\frac{3}{2} - r}.\tag{30}$$

Proof

► Following the same lines as in the Proof of Theorem 5 and using (25), we arrive at

$$Q(t) \le \left(Q(0) + \tilde{\tilde{C}}\epsilon^{\frac{3}{2}}\right) e^{\frac{C_s}{2(p-1)k_s}\left(e^{2(p-1)k_s\tau_0} - 1\right)}.$$
 (28)

▶ To achieve the required extension of the time interval, we assume that

$$e^{\frac{C_s}{2(p-1)k_s}(e^{2(p-1)k_s\tau_0}-1)} = \frac{\mu}{\epsilon^r},\tag{29}$$

where μ is fixed and so is $r \in (0, \frac{1}{2})$.

Finally, we arrive at

$$Q(t) \le C \,\epsilon^{\frac{3}{2}-r}. \tag{30}$$

we established the following results.

- ▶ In Theorem 2, we showed that the upper bound on the $H^s(\mathbb{R})$ norm of the solution of the gKDV equation (4) with p=2,3 does not depend on time for any $s\in\mathbb{N}$.
- ▶ In Theorem 4, we showed that the upper bound on the $H^s(\mathbb{R})$ norm of the solution of the gKDV equation (4) with p=5 grows like

$$||W||_{H^s(\mathbb{R})} \le c_s e^{k_s \int_0^\tau ||W_{\xi}||_{L^{\infty}} d\tau}.$$

- .
- ▶ In Theorem 5, we approximated dynamics of the FPU lattice (8) with solutions of the gKDV equation (4) on standard time scale.
- In Theorem 6 and 7, we approximated dynamics of the FPU lattice (8) with solutions of the gKDV equation (4) for p=2,3,5 on extended time scale.

we established the following results.

- ▶ In Theorem 2, we showed that the upper bound on the $H^s(\mathbb{R})$ norm of the solution of the gKDV equation (4) with p=2,3 does not depend on time for any $s\in\mathbb{N}$.
- ▶ In Theorem 4, we showed that the upper bound on the $H^s(\mathbb{R})$ norm of the solution of the gKDV equation (4) with p=5 grows like

$$||W||_{H^s(\mathbb{R})} \le c_s e^{k_s \int_0^\tau ||W_\xi||_{L^\infty} d\tau}.$$

- ▶ In Theorem 5, we approximated dynamics of the FPU lattice (8) with solutions of the gKDV equation (4) on standard time scale.
- In Theorem 6 and 7, we approximated dynamics of the FPU lattice (8) with solutions of the gKDV equation (4) for p=2,3,5 on extended time scale.

we established the following results.

- ▶ In Theorem 2, we showed that the upper bound on the $H^s(\mathbb{R})$ norm of the solution of the gKDV equation (4) with p=2,3 does not depend on time for any $s\in\mathbb{N}$.
- ▶ In Theorem 4, we showed that the upper bound on the $H^s(\mathbb{R})$ norm of the solution of the gKDV equation (4) with p=5 grows like

$$||W||_{H^s(\mathbb{R})} \le c_s e^{k_s \int_0^\tau ||W_\xi||_{L^\infty} d\tau}.$$

- ▶ In Theorem 5, we approximated dynamics of the FPU lattice (8) with solutions of the gKDV equation (4) on standard time scale.
- ▶ In Theorem 6 and 7, we approximated dynamics of the FPU lattice (8) with solutions of the gKDV equation (4) for p=2,3,5 on extended time scale.

we established the following results.

- ▶ In Theorem 2, we showed that the upper bound on the $H^s(\mathbb{R})$ norm of the solution of the gKDV equation (4) with p=2,3 does not depend on time for any $s\in\mathbb{N}$.
- ▶ In Theorem 4, we showed that the upper bound on the $H^s(\mathbb{R})$ norm of the solution of the gKDV equation (4) with p=5 grows like

$$||W||_{H^s(\mathbb{R})} \le c_s e^{k_s \int_0^\tau ||W_\xi||_{L^\infty} d\tau}.$$

٠

- ▶ In Theorem 5, we approximated dynamics of the FPU lattice (8) with solutions of the gKDV equation (4) on standard time scale.
- ▶ In Theorem 6 and 7, we approximated dynamics of the FPU lattice (8) with solutions of the gKDV equation (4) for p=2,3,5 on extended time scale.

Based on our results we claim the following

- ▶ Solitary waves of the FPU lattice (8) with p=2,3 can be approximated by the stable solitary waves of the gKDV equation (4) with p=2,3 on an extended time interval up to $\mathcal{O}(|\log(\epsilon)|\epsilon^{-3})$.
- Dynamics of small-norm solution to the FPU lattice (8) with p=5 can be approximated by globally small-norm solution to the gKDV equation (4) with p=5 on an extended time interval up to $\mathcal{O}(\log|\log(\epsilon)|\epsilon^{-3})$.

Based on our results we claim the following

- ▶ Solitary waves of the FPU lattice (8) with p=2,3 can be approximated by the stable solitary waves of the gKDV equation (4) with p=2,3 on an extended time interval up to $\mathcal{O}(|\log(\epsilon)|\epsilon^{-3})$.
- ▶ Dynamics of small-norm solution to the FPU lattice (8) with p=5 can be approximated by globally small-norm solution to the gKDV equation (4) with p=5 on an extended time interval up to $\mathcal{O}(\log|\log(\epsilon)|\epsilon^{-3})$.

Finally, we present open problems which are left for further studies

- We are not able to extend the time scale of the gKDV equation (4) with p=4 by a logarithmic factor. The difficulty is that we ere unable to find suitable energy estimate on the growth of $||W||_{H^6}$.
- Another problem is that the result of Theorem 7 for p=5 excludes the solitary waves because the initial data has small $L^2(\mathbb{R})$ norm.
- ▶ we are not able to show that the exponential growth (25) can be deduced the bound (7) in Theorem 4.

Finally, we present open problems which are left for further studies

- We are not able to extend the time scale of the gKDV equation (4) with p=4 by a logarithmic factor. The difficulty is that we ere unable to find suitable energy estimate on the growth of $||W||_{H^6}$.
- Another problem is that the result of Theorem 7 for p=5 excludes the solitary waves because the initial data has small $L^2(\mathbb{R})$ norm.
- ▶ we are not able to show that the exponential growth (25) can be deduced the bound (7) in Theorem 4.

Finally, we present open problems which are left for further studies

- We are not able to extend the time scale of the gKDV equation (4) with p=4 by a logarithmic factor. The difficulty is that we ere unable to find suitable energy estimate on the growth of $||W||_{H^6}$.
- Another problem is that the result of Theorem 7 for p=5 excludes the solitary waves because the initial data has small $L^2(\mathbb{R})$ norm.
- ▶ we are not able to show that the exponential growth (25) can be deduced the bound (7) in Theorem 4.

Thank You