MATH 3J04: Home Assignment # 4

Due to: November 7, 2000

Problem 11.3 #4: Consider the string of length $L = \pi$. The ends of the string are fixed at x = 0 and x = L. The initial velocity is zero and the initial deflection is

$$f(x) = 0.1x(\pi - x)$$

Find the vertical deflection u(x,t) at later times by solving the wave equation:

$$u_{tt} = u_{xx}$$

Problem 11.4 #19: Consider an elastic bar with initial displacement u(x,0) = f(x) and zero initial velocity. The bar is fastened at one end, x = 0, and is free at the other end, x = L. The boundary conditions for displacement u(x,t) are

$$u(0,t) = 0 \quad u_x(L,t) = 0$$

Find the displacement u(x,t) at later times by solving the wave equation:

$$u_{tt} = u_{xx}$$

Problem 11.5 #4: Consider the bar of length L = 10, whose ends are kept at temperature zero and whose initial temperature is

$$f(x) = k\sin(0.2\pi x)$$

Find the temperature u(x,t) at later times by solving the heat equation:

$$u_t = u_{xx}$$

Problem 11.5 #18(a):Consider the square plate

$$S = \{0 \le x \le a, 0 \le y \le a\}$$

with a = 2. Find steady-state solutions of the Laplace equation,

$$u_{xx} + u_{yy} = 0$$

for the following boundary conditions:

$$u(x, a) = \sin(\pi x), \quad u(x, 0) = u(0, y) = u(a, y) = 0$$

Problem 11.6 #2: Consider the heat equation $u_t = u_{xx}$ for the initial condition u(x,0) = f(x), where

$$f(x) = \frac{1}{1+x^2}$$

Find the solution u(x,t) of the problem by using the Fourier Cosine transform.

Problem 11.8 #12: Find the deflection u(x, y, t) of the square membrane with a = b = 1 and $c^2 = 1$ if the initial velocity is zero and the initial deflection is

$$U(x, y, 0) = f(x, y) = k \sin(\pi x) \sin(\pi y),$$

where k is constant.