MATH 3J04: Solutions to Home Assignment # 5

Problem 19.4 #4: The method is based on the finite difference for the Laplace equation

$$u_{n+1,k} + u_{n-1,k} + u_{n,k+1} + u_{n,k-1} - 4u_{n,k} = 0; \quad n = 1,2; \quad k = 1,2.$$

The system for four interior points has the exact solution: $u_{1,1} = -2$, $u_{1,2} = -11$, $u_{2,1} = 2$, and $u_{2,2} = -16$.

Problem 19.6 #6: The explicit method for the heat equation on the given grid is

$$u_{n,k+1} = \frac{1}{2}u_{n,k} + \frac{1}{4}(u_{n+1,k} + u_{n-1,k}); \quad n = 1, 2, 3, 4; \quad k = 0, 1, 2, 3, 4.$$

The numerical values found from this method are:

k/n	n = 1	n=2	n = 3	n=4
k = 0	0.2	0.4	0.4	0.2
k = 1	0.2	0.35	0.35	0.2
k=2	0.19	0.31	0.31	0.19
k = 3	0.17	0.28	0.28	0.17
k=4	0.16	0.25	0.25	0.16
k=5	0.14	0.23	0.23	0.14

Problem 19.6 #8: The same explicit method as in the previous problem is complimented by different boundary conditions:

$$u_{5,k} = \sin(50\pi t_k/3), \quad u_{0,k+1} = \frac{1}{2}(u_{0,k} + u_{1,k})$$

The numerical values found from this method are:

k/n	n = 0	n = 1	n=2	n = 3	n=4	n=5
k = 0	0	0	0	0	0	0
k = 1	0	0	0	0	0	0.5
k=2	0	0	0	0	0.125	0.87
k = 3	0	0	0	0.03	0.28	1
k=4	0	0	0.008	0.08	0.40	0.87
k=5	0	0.002	0.025	0.14	0.44	0.5

Problem 19.7 #2: The explicit method for the wave equation on the given grid is

$$u_{n,k+1} = u_{n-1,k} + u_{n+1,k} - u_{n,k-1};$$
 $n = 1, 2, 3, 4;$ $k = 0, 1, 2, 3, 4.$

The first step should be computed as

$$u_{n,1} = \frac{1}{2} (u_{n-1,0} + u_{n+1,0}), \quad n = 1, 2, 3, 4.$$

The numerical values found from this method are:

k/n	n = 1	n=2	n=3	n=4
k = 0	0.032	0.096	0.144	0.128
k = 1	0.048	0.088	0.112	0.072
k=2	0.056	0.064	0.016	-0.016
k = 3	0.16	-0.016	-0.064	-0.056
k = 4	-0.072	-0.112	-0.088	-0.048
k = 5	-0.128	-0.144	-0.096	-0.032

Problem 22.3 #6: By computing the number of possible outcomes to get one, two and three Six out of three dices, one can find

$$P = \frac{1}{6^3} + \frac{3*5}{6^3} + \frac{3*5^2}{6^3} = \frac{91}{216}$$

Problem 22.5 #14: The probability distribution for number of time until the first Six appears:

$$f(x) = \frac{5^{n-1}}{6^n}, \quad x = n$$

The normalization condition is satisfied by using the geometric series

$$\sum_{n=1}^{\infty} p_n = \frac{1}{5} \left(\sum_{n=0}^{\infty} \left(\frac{5}{6} \right)^n - 1 \right) = \frac{1}{5} \left(\frac{1}{1 - 5/6} - 1 \right) = 1.$$