Mathematics 4X03: Plan of Lectures (Fall, 2000)
Notes: Numbers in brackets refer to sections of the main and auxiliary textbooks.
GK - the book by Greene and Krantz; AF - the book by Ablowitz and Fokas.
- Complex differentiation and holomorphic functions
- properties of complex numbers [GK: 1.1-1.2; AF: 1.1]
- complex polynomials and elementary functions [GK: 1.3; AF: 1.2.1]
- limits, continuity and complex differentiation [GK: 2.2; AF: 1.3]
- Cauchy--Riemann equations for holomorphic functions [GK: 1.4-1.5; AF: 2.1.1]
- Complex integration and Cauchy integral formulas
- complex line integrals [GK: 2.1; AF: 2.4]
- Cauchy integral theorem [GK: 2.4-2.5; AF: 2.5]
- Cauchy integral formula [GK: 2.6,3.1; AF: 2.6.1]
- generalized Cauchy formula and D-bar derivative [GK: App.A; AF: 2.6.3]
- Taylor and Laurent series
- Taylor series and convergence [GK: 3.2-3.3; AF: 3.1-3.2]
- Cauchy estimates and Liouville's theorem [GK: 3.4; AF: 2.6.2]
- zeros of holomorphic functions [GK: 3.6,5.3; AF: 4.4]
- isolated singularities of holomorphic functions [GK: 4.1; AF: 3.5]
- Laurent series and meromorphic functions [GK: 4.2-4.3; AF: 3.3]
- Residue calculus for meromorphic functions
- Cauchy residue theorem [GK: 4.4-4.5; AF: 4.1]
- evaluation of real definite integrals [GK: 4.6; AF: 4.2]
- evaluation of principal value integrals and semidefinite integrals
[GK: 4.6; AF: 4.3]
- singularities at infinity and stereographic projection [GK: 4.7; AF: 1.2.2,4.1]
- argument principle for meromorphic functions [GK: 5.1; AF: 4.4]
- Harmonic functions and the maximum principle
- properties of harmonic functions [GK: 5.4,7.1, 7.2; AF: 2.6.2]
- the Poisson integral formula [GK: 7.3; AF: 4.6]
- the Dirichlet problem and subharmonic functions [GK: 7.7-7.8]
- Conformal mappings and linear fractional transformations
- conformal transformations [GK: 6.1; AF: 5.2]
- properties of linear fractional transformations [GK: 6.2-6.3; AF: 5.7]
- critical points and Riemann mapping theorem [GK: 5.2,6.4,7.9; AF: 5.3,5.5]
- Schwarz--Christoffel transformations [GK: 5.5,7.5; AF: 5.6,5.7]
- Analytic continuation and special functions
- analytic continuation and natural barriers [GK: 10.1-10.3; AF: 3.2,3.5.1]
- multivalued functions, branch cuts, and Riemann surfaces [GK: 10.4; AF: 2.2-2.3]
- elliptic functions and Mittag-Leffler expansions [GK: 10.6; AF: 3.6,5.6]
- properties of the Gamma and Zeta functions [GK: 15.1-15.2; AF: 3.6,4.5]
- Riemann-Hilbert problems of complex analysis
- Cauchy type integrals and projection operators [AF: 7.1-7.2]
- scalar Riemann-Hilbert problems [AF: 7.3]
- the Hilbert and D-bar problems [AF: 7.4,7.6]
Back to Math4X03 Home Page